RESUMO
In this study, the molecular interactions of the allylamine-type fungicide butenafine and a set of substructures ("fragments") with liposomes mimicking biological membranes were studied to gain a better understanding of the structural factors governing membrane affinity and perturbation. Specifically, drug/fragment-membrane interactions were investigated using an interdisciplinary approach involving micro differential scanning calorimetry, open-tubular capillary electrochromatography, nanoplasmonic sensing, and quartz crystal microbalance. By incubating the drug and the fragment compounds with liposomes with varying lipid composition or by externally adding the compounds to preformed liposomes, a detailed mechanistic picture on the underlying drug/fragment-membrane interactions was obtained. The nature and the degree of ionisation of polar head groups of the lipids had a major influence on the nature of drug-membrane interactions, and so had the presence and relative concentration of cholesterol within the membranes. The in-depth understanding of drug/fragment-membranes interactions established by the presented interdisciplinary fragment-based approach may be useful in guiding the design and early-stage evaluation of prospective antifungal drug candidates, and the discovery of agents with improved membrane penetrating characteristics in general.
Assuntos
Fungicidas Industriais , Lipossomos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Lipossomos/química , Técnicas de Microbalança de Cristal de Quartzo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Colesterol/químicaRESUMO
Liposome capillary electrokinetic chromatography was used to investigate the interactions between three ß-blockers of different hydrophobicity and various liposome solutions. The studied ß-blockers comprised alprenolol, propranolol, and carvedilol. The composition of the liposome solutions, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycero-3-phos-phoethanolamine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine, and cholesterol in various molar ratios, was designed by a response surface methodology-central composite design approach. Subsequently, after conducting the liposome capillary electrokinetic chromatography experiments and determining the retention factors from the electrophoretic mobilities of the compounds, and further calculating the distribution coefficients, an analysis of variance was performed. After extracting the statistical models, optimal operational conditions were obtained based on the developed models. To further investigate the interactions between the ß-blockers and the liposomes, nanoplasmonic sensing experiments were carried out on two different liposome systems. The overall results demonstrate the strong influence of cholesterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine on the distribution coefficients.