Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2317285121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870053

RESUMO

Human pluripotent stem cell (hPSC)-derived retinal organoids are three-dimensional cellular aggregates that differentiate and self-organize to closely mimic the spatial and temporal patterning of the developing human retina. Retinal organoid models serve as reliable tools for studying human retinogenesis, yet limitations in the efficiency and reproducibility of current retinal organoid differentiation protocols have reduced the use of these models for more high-throughput applications such as disease modeling and drug screening. To address these shortcomings, the current study aimed to standardize prior differentiation protocols to yield a highly reproducible and efficient method for generating retinal organoids. Results demonstrated that through regulation of organoid size and shape using quick reaggregation methods, retinal organoids were highly reproducible compared to more traditional methods. Additionally, the timed activation of BMP signaling within developing cells generated pure populations of retinal organoids at 100% efficiency from multiple widely used cell lines, with the default forebrain fate resulting from the inhibition of BMP signaling. Furthermore, given the ability to direct retinal or forebrain fates at complete purity, mRNA-seq analyses were then utilized to identify some of the earliest transcriptional changes that occur during the specification of these two lineages from a common progenitor. These improved methods also yielded retinal organoids with expedited differentiation timelines when compared to traditional methods. Taken together, the results of this study demonstrate the development of a highly reproducible and minimally variable method for generating retinal organoids suitable for analyzing the earliest stages of human retinal cell fate specification.


Assuntos
Diferenciação Celular , Organoides , Células-Tronco Pluripotentes , Retina , Humanos , Organoides/citologia , Organoides/metabolismo , Retina/citologia , Retina/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Reprodutibilidade dos Testes , Proteínas Morfogenéticas Ósseas/metabolismo
2.
Sci Rep ; 13(1): 13827, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620502

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of Aß plaques and neurofibrillary tangles, resulting in synaptic loss and neurodegeneration. The retina is an extension of the central nervous system within the eye, sharing many structural similarities with the brain, and previous studies have observed AD-related phenotypes within the retina. Three-dimensional retinal organoids differentiated from human pluripotent stem cells (hPSCs) can effectively model some of the earliest manifestations of disease states, yet early AD-associated phenotypes have not yet been examined. Thus, the current study focused upon the differentiation of hPSCs into retinal organoids for the analysis of early AD-associated alterations. Results demonstrated the robust differentiation of retinal organoids from both familial AD and unaffected control cell lines, with familial AD retinal organoids exhibiting a significant increase in the Aß42:Aß40 ratio as well as phosphorylated Tau protein, characteristic of AD pathology. Further, transcriptional analyses demonstrated the differential expression of many genes and cellular pathways, including those associated with synaptic dysfunction. Taken together, the current study demonstrates the ability of retinal organoids to serve as a powerful model for the identification of some of the earliest retinal alterations associated with AD.


Assuntos
Doença de Alzheimer , Humanos , Organoides , Sistema Nervoso Central , Fenótipo , Retina
3.
bioRxiv ; 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36711831

RESUMO

Autophagy dysfunction has been associated with several neurodegenerative diseases including glaucoma, characterized by the degeneration of retinal ganglion cells (RGCs). However, the mechanisms by which autophagy dysfunction promotes RGC damage remain unclear. Here, we hypothesized that perturbation of the autophagy pathway results in increased autophagic demand, thereby downregulating signaling through mammalian target of rapamycin complex 1 (mTORC1), a negative regulator of autophagy, contributing to the degeneration of RGCs. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor adenosine monophosphate-activated protein kinase (AMPK), along with subsequent neurodegeneration in RGCs differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated variant of Optineurin (OPTN-E50K). Similarly, the microbead occlusion model of glaucoma resulting in ocular hypertension also exhibited autophagy disruption and mTORC1 downregulation. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN-E50K RGCs. Taken together, these results highlight an important balance between autophagy and mTORC1 signaling essential for RGC homeostasis, while disruption to these pathways contributes to neurodegenerative features in glaucoma, providing a potential therapeutic target to prevent neurodegeneration.

4.
Stem Cell Reports ; 17(7): 1636-1649, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35714595

RESUMO

Although the degeneration of retinal ganglion cells (RGCs) is a primary characteristic of glaucoma, astrocytes also contribute to their neurodegeneration in disease states. Although studies often explore cell-autonomous aspects of RGC neurodegeneration, a more comprehensive model of glaucoma should take into consideration interactions between astrocytes and RGCs. To explore this concept, RGCs and astrocytes were differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated OPTN(E50K) mutation along with corresponding isogenic controls. Initial results indicated significant changes in OPTN(E50K) astrocytes, including evidence of autophagy dysfunction. Subsequently, co-culture experiments demonstrated that OPTN(E50K) astrocytes led to neurodegenerative properties in otherwise healthy RGCs, while healthy astrocytes rescued some neurodegenerative features in OPTN(E50K) RGCs. These results are the first to identify disease phenotypes in OPTN(E50K) astrocytes, including how their modulation of RGCs is affected. Moreover, these results support the concept that astrocytes could offer a promising target for therapeutic intervention in glaucoma.


Assuntos
Glaucoma , Células-Tronco Pluripotentes , Astrócitos , Proteínas de Ciclo Celular/genética , Glaucoma/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Fenótipo , Células Ganglionares da Retina
5.
Stem Cell Reports ; 16(9): 2228-2241, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34115986

RESUMO

The development of the visual system involves the coordination of spatial and temporal events to specify the organization of varied cell types, including the elongation of axons from retinal ganglion cells (RGCs) to post-synaptic targets in the brain. Retinal organoids recapitulate many features of retinal development, yet have lacked downstream targets into which RGC axons extend, limiting the ability to model projections of the human visual system. To address these issues, retinal organoids were generated and organized into an in vitro assembloid model of the visual system with cortical and thalamic organoids. RGCs responded to environmental cues and extended axons deep into assembloids, modeling the projections of the visual system. In addition, RGC survival was enhanced in long-term assembloids, overcoming prior limitations of retinal organoids in which RGCs are lost. Overall, these approaches will facilitate studies of human visual system development, as well as diseases or injuries to this critical pathway.


Assuntos
Diferenciação Celular , Organoides/citologia , Organoides/metabolismo , Células-Tronco Pluripotentes/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Animais , Axônios/fisiologia , Biomarcadores , Técnicas de Cultura de Células em Três Dimensões/métodos , Fenômenos Fisiológicos Celulares , Células Cultivadas , Imunofluorescência , Genes Reporter , Humanos , Camundongos , Crescimento Neuronal , Sinapses/metabolismo , Vias Visuais
6.
Methods Cell Biol ; 159: 279-302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32586447

RESUMO

Human pluripotent stem cells (hPSCs) possess the remarkable ability to differentiate into any cell type of the body, including those of the retina. Through the differentiation of these cells as retinal organoids, it is now possible to model the spatial and temporal development of the human retina using hPSCs, in which retinal progenitor cells produce the entire repertoire of retinal cells, first differentiating into retinal ganglion cells and ending with mature photoreceptors, bipolar cells, and Müller glia. Importantly, retinal organoids self-assemble into laminated structures that recapitulate the layering of the human retina with a retinal ganglion cell layer lining the inner layer and a distinctly separate photoreceptor layer occupying the outer layers. This organoid technology has provided access to human tissue for developmental and disease modeling, as well as translational applications such as high throughput drug screening and cell replacement therapies. However, the differentiation of retinal organoids does require some expertise and multiple strategies produce inconsistent results. Here, we describe in detail a well-established and relatively simple method for the generation of retinal organoids.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Retina/citologia , Agregação Celular , Humanos
7.
Stem Cell Reports ; 15(1): 52-66, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32531194

RESUMO

Retinal ganglion cells (RGCs) serve as the connection between the eye and the brain, with this connection disrupted in glaucoma. Numerous cellular mechanisms have been associated with glaucomatous neurodegeneration, and useful cellular models of glaucoma allow for the precise analysis of degenerative phenotypes. Human pluripotent stem cells (hPSCs) serve as powerful tools for studying human disease, particularly cellular mechanisms underlying neurodegeneration. Thus, efforts focused upon hPSCs with an E50K mutation in the Optineurin (OPTN) gene, a leading cause of inherited forms of glaucoma. CRISPR/Cas9 gene editing introduced the OPTN(E50K) mutation into existing lines of hPSCs, as well as generating isogenic controls from patient-derived lines. RGCs differentiated from OPTN(E50K) hPSCs exhibited numerous neurodegenerative deficits, including neurite retraction, autophagy dysfunction, apoptosis, and increased excitability. These results demonstrate the utility of OPTN(E50K) RGCs as an in vitro model of neurodegeneration, with the opportunity to develop novel therapeutic approaches for glaucoma.


Assuntos
Proteínas de Ciclo Celular/genética , Glaucoma/genética , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Degeneração Neural/patologia , Organoides/patologia , Células Ganglionares da Retina/patologia , Animais , Apoptose , Autofagia , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Modelos Animais de Doenças , Regulação para Baixo/genética , Edição de Genes , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Fenótipo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA