Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068684

RESUMO

Results over the last decades have provided evidence suggesting that HPA axis dysfunction is a major risk factor predisposing to the development of psychopathological behaviour. This susceptibility can be programmed during developmental windows of marked neuroplasticity, allowing early-life adversity to convey vulnerability to mental illness later in life. Besides genetic predisposition, also environmental factors play a pivotal role in this process, through embodiment of the mother's emotions, or via nutrients and hormones transferred through the placenta and the maternal milk. The aim of the current translational study was to mimic a severe stress condition by exposing female CD-1 mouse dams to abnormal levels of corticosterone (80 µg/mL) in the drinking water either during the last week of pregnancy (PreCORT) or the first one of lactation (PostCORT), compared to an Animal Facility Rearing (AFR) control group. When tested as adults, male mice from PostCORT offspring and somewhat less the PreCORT mice exhibited a markedly increased corticosterone response to acute restraint stress, compared to perinatal AFR controls. Aberrant persistence of adolescence-typical increased interest towards novel social stimuli and somewhat deficient emotional contagion also characterised profiles in both perinatal-CORT groups. Intranasal oxytocin (0 or 20.0 µg/kg) generally managed to reduce the stress response and restore a regular behavioural phenotype. Alterations in density of glucocorticoid and mineralocorticoid receptors, oxytocin and µ- and κ-opioid receptors were found. Changes differed as a function of brain areas and the specific age window of perinatal aberrant stimulation of the HPA axis. Present results provided experimental evidence in a translational mouse model that precocious adversity represents a risk factor predisposing to the development of psychopathological behaviour.


Assuntos
Corticosterona/genética , Ocitocina/genética , Receptores Opioides mu/genética , Estresse Psicológico/genética , Animais , Emoções/fisiologia , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Angústia Psicológica , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Estresse Psicológico/imunologia
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201747

RESUMO

Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.


Assuntos
Toxinas Bacterianas/farmacologia , Encéfalo/efeitos dos fármacos , Proteínas de Escherichia coli/farmacologia , Proteína 2 de Ligação a Metil-CpG/genética , Mitocôndrias/efeitos dos fármacos , Síndrome de Rett/tratamento farmacológico , Animais , Toxinas Bacterianas/administração & dosagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Proteínas de Escherichia coli/administração & dosagem , Medo/efeitos dos fármacos , Feminino , Infusões Intraventriculares , Mutação com Perda de Função , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos Mutantes , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Síndrome de Rett/etiologia , Serina-Treonina Quinases TOR/metabolismo
3.
Synapse ; 74(4): e22138, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31587367

RESUMO

We aimed at the further characterization of rats in which SERT gene silencing was achieved by hippocampal injection of a lentiviral vector, carrying three si-RNA to block SERT mRNA at 66% of normal levels. Improved self-control and reduced restlessness were already demonstrated in these rats. Present further studies consisted of male adult rats, bilaterally inoculated within the hippocampus; control rats received lentivirus particles inactivated with heat. Both groups were maintained in isolation for 5 months, starting from inoculation. Neurochemical changes were studied by proton magnetic resonance spectroscopy (1H-MRS): we found increased hippocampal viability and bioenergetic potential; however, rats showed a behaviorally depressive pattern, also characterized by enhanced affiliation. Based on the extent of such effects, the whole lenti-SERT group was divided into two subgroups, termed intermediate- and extreme- phenotype profiles. While all rats had a widespread modification within dorsal/ventral striatum, amygdala, and hypothalamus, only the former subgroup showed an involvement of Raphé medialis, while, for the latter subgroup, an increase of SERT within hippocampus was unexpectedly caused. Within the less-affected "intermediate" rats, hippocampal 5-HT7 receptors were down-modulated, and also similarly within substantia nigra, septum, and neocortex. This picture demonstrates that additional rather than fewer neurobiological changes accompany a lower phenotypic expression. Overall, tapping hippocampal SERT affected the balance between habits versus strategies of coping by promoting morphogenetic processes indicative of a serotonergic fiber plasticity. Supplementary studies about serotonergic dynamics and neurogenesis within fronto-striatal circuits are needed.


Assuntos
Hipocampo/metabolismo , Aprendizagem em Labirinto , Proteínas de Ligação a RNA/genética , Comportamento Social , Animais , Inativação Gênica , Hipocampo/citologia , Hipocampo/fisiologia , Lentivirus/genética , Masculino , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
4.
J Neurosci ; 38(8): 1959-1972, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29348190

RESUMO

Dopamine (DA) controls many vital physiological functions and is critically involved in several neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder. The major function of the plasma membrane dopamine transporter (DAT) is the rapid uptake of released DA into presynaptic nerve terminals leading to control of both the extracellular levels of DA and the intracellular stores of DA. Here, we present a newly developed strain of rats in which the gene encoding DAT knockout Rats (DAT-KO) has been disrupted by using zinc finger nuclease technology. Male and female DAT-KO rats develop normally but weigh less than heterozygote and wild-type rats and demonstrate pronounced spontaneous locomotor hyperactivity. While striatal extracellular DA lifetime and concentrations are significantly increased, the total tissue content of DA is markedly decreased demonstrating the key role of DAT in the control of DA neurotransmission. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, the partial Trace Amine-Associated Receptor 1 (TAAR1) agonist RO5203648 ((S)-4-(3,4-Dichloro-phenyl)-4,5-dihydro-oxazol-2-ylamine) and haloperidol. DAT-KO rats also demonstrate a deficit in working memory and sensorimotor gating tests, less propensity to develop obsessive behaviors and show strong dysregulation in frontostriatal BDNF function. DAT-KO rats could provide a novel translational model for human diseases involving aberrant DA function and/or mutations affecting DAT or related regulatory mechanisms.SIGNIFICANCE STATEMENT Here, we present a newly developed strain of rats in which the gene encoding the dopamine transporter (DAT) has been disrupted (Dopamine Transporter Knockout rats [DAT-KO rats]). DAT-KO rats display functional hyperdopaminergia accompanied by pronounced spontaneous locomotor hyperactivity. Hyperactivity of DAT-KO rats can be counteracted by amphetamine, methylphenidate, and a few other compounds exerting inhibitory action on dopamine-dependent hyperactivity. DAT-KO rats also demonstrate cognitive deficits in working memory and sensorimotor gating tests, less propensity to develop compulsive behaviors, and strong dysregulation in frontostriatal BDNF function. These observations highlight the key role of DAT in the control of brain dopaminergic transmission. DAT-KO rats could provide a novel translational model for human diseases involving aberrant dopamine functions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Hipercinese/etiologia , Animais , Disfunção Cognitiva/metabolismo , Feminino , Técnicas de Inativação de Genes , Hipercinese/metabolismo , Masculino , Ratos , Ratos Wistar
5.
Eur Child Adolesc Psychiatry ; 27(2): 241-252, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28822049

RESUMO

In view of the need for easily accessible biomarkers, we evaluated in ADHD children the epigenetic status of the 5'-untranslated region (UTR) in the SLC6A3 gene, coding for human dopamine transporter (DAT). We analysed buccal swabs and sera from 30 children who met DSM-IV-TR criteria for ADHD, assigned to treatment according to severity. Methylation levels at six-selected CpG sites (among which, a CGGCGGCGG and a CGCG motif), alone or in combination with serum titers in auto-antibodies against dopamine transporter (DAT aAbs), were analysed for correlation with CGAS scores (by clinicians) and Conners' scales (by parents), collected at recruitment and after 6 weeks. In addition, we characterized the DAT genotype, i.e., the variable number tandem repeat (VNTR) polymorphisms at the 3'-UTR of the gene. DAT methylation levels were greatly reduced in ADHD patients compared to control, healthy children. Within patients carrying at least one DAT 9 allele (DAT 9/x), methylation at positions CpG2 and/or CpG6 correlated with recovery, as evident from delta-CGAS scores as well as delta Conners' scales ('inattentive' and 'hyperactive' subscales). Moreover, hypermethylation at CpG1 position denoted severity, specifically for those patients carrying a DAT 10/10 genotype. Intriguingly, high serum DAT-aAbs titers appeared to corroborate indications from high CpG1 versus high CpG2/CpG6 levels, likewise denoting severity versus recovery in DAT 10/10 versus 9/x patients, respectively. These profiles suggest that DAT 5'UTR epigenetics plus serum aAbs can serve as suitable biomarkers, to confirm ADHD diagnosis and/or to predict the efficacy of treatment.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Polimorfismo Genético/genética , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Criança , Feminino , Genótipo , Humanos , Masculino
6.
Mediators Inflamm ; 2017: 9467819, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28592917

RESUMO

Rett syndrome (RTT) is a rare neurodevelopmental disorder usually caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Several Mecp2 mutant mouse lines have been developed recapitulating part of the clinical features. In particular, Mecp2-308 female heterozygous mice, bearing a truncating mutation, are a validated model of the disease. While recent data suggest a role for inflammation in RTT, little information on the inflammatory status in murine models of the disease is available. Here, we investigated the inflammatory status by proteomic 2-DE/MALDI-ToF/ToF analyses in symptomatic Mecp2-308 female mice. Ten differentially expressed proteins were evidenced in the Mecp2-308 mutated plasma proteome. In particular, 5 positive acute-phase response (APR) proteins increased (i.e., kininogen-1, alpha-fetoprotein, mannose-binding protein C, alpha-1-antitrypsin, and alpha-2-macroglobulin), and 3 negative APR reactants were decreased (i.e., serotransferrin, albumin, and apolipoprotein A1). CD5 antigen-like and vitamin D-binding protein, two proteins strictly related to inflammation, were also changed. These results indicate for the first time a persistent unresolved inflammation of unknown origin in the Mecp2-308 mouse model.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/imunologia , Síndrome de Rett/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Proteômica
7.
J Neuroinflammation ; 13: 2, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728085

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disease which affects 1 in 88 children. Its etiology remains basically unknown, but it is apparent that neuroinflammation is involved in disease development. Great attention has been focused on pro-inflammatory cytokines, and several studies have reported their dysfunction unbalance in serum as well as in the brain. The present work aimed at evaluating putative dysregulation of interleukin-18 (IL-18), a pro-inflammatory cytokine of the IL-1 family in the sera of patients with ASD of different grades, compared to healthy controls, as well as in postmortem brain samples obtained from patients with tuberous sclerosis as well as acute inflammatory diseases. Moreover, quantitative analysis of IL-18 was performed in the sera and brain obtained from Reeler mice, an experimental model of autism. METHODS: Serum IL-18 levels were measured by ELISA. IL-18 was localized by immunohistochemical analysis in brain sections obtained from tuberous sclerosis and encephalitis patients, as well as from gender- and age-matched controls, and in the brain sections of both Reeler and wild-type mice. IL-18 was also quantified by Western blots in homogenates of Reeler and wild-type mice brains. IL-18 binding protein (IL-18BP) was evaluated in Reeler and wild-type mice plasma as well as in their brains (sections and homogenates). RESULTS: IL-18 content decreased in the sera of patients with autism compared to healthy subjects and in Reeler sera compared to wild-type controls. IL-18 was detected within glial cells and neurons in the brain of subjects affected by tuberous sclerosis and encephalitis whereas in healthy subjects, only a weak IL-18 positivity was detected at the level of glial cells. Western blot identified higher amounts of IL-18 in Reeler brain homogenates compared to wild-type littermates. IL-18BP was expressed in higher amounts in Reeler brain compared to the brain of wild-type mice, whereas no significant difference was detected comparing IL-18BP plasma levels. CONCLUSIONS: IL-18 is dysregulated in ASD patients. Further studies seemed necessary to clarify the molecular details behind IL-18 increase in the brain and IL-18 decrease in the sera of patients. An increase in the size of the patient cohort seems necessary to ascertain whether decreased IL-18 content in the sera can become a predictive biomarker of ASD and whether its measure, in combination with other markers (e.g., increased levels of brain-derived neurotrophic factor (BDNF)), may be included in a diagnostic panel.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/metabolismo , Interleucina-18/metabolismo , Adolescente , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Criança , Pré-Escolar , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Inquéritos e Questionários , Adulto Jovem
8.
Synapse ; 69(11): 533-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26364910

RESUMO

Brain serotonin 7 (5-HT7) receptors play an important functional role in learning and memory, in regulation of mood and motivation, and for circadian rhythms. Recently, we have studied the modulatory effects of a developmental exposure (under subchronic regimen) in rats with LP-211, a brain-penetrant and selective 5-HT7 receptor agonist. We aimed at further deciphering long-term sequelae into adulthood. LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during the adolescent phase (postnatal days 43-45 to 47-49). When adult (postnatal days >70), forebrain areas were obtained for ex vivo immunohistochemistry, whose results prompted us to reconsider the brain connectivity maps presented in our previous study (Canese et al., Psycho-Pharmacol 2015;232:75-89.) Significant elevation in levels of 5-HT7 receptors were evidenced due to adolescent LP-211 exposure, in dorsal striatum (which also shows an increase of dopaminergic D2 auto-receptors) and-unexpectedly-in piriform cortex, with no changes in ventral striatum. We observed that functional connectivity from a seed on the right hippocampus was more extended than reported, also including the piriform cortex. As a whole, the cortical loop rearranged by adolescent LP-211 exposure consisted in a hippocampus receiving connections from piriform cortex and dorsal striatum, the latter both directly and through functional control over the 'extended amygdala'. Such results represent a starting point to explore neurophysiology of 5-HT7 receptors. Further investigation is warranted to develop therapies for sleep disorders, for impaired emotional and motivational regulation, for attentive and executive deficit. The 5-HT7 agonist LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during adolescence (postnatal days 43-45 to 47-49) in rats. When adult (postnatal days >70), a significant elevation in levels of 5-HT7 receptors were evidenced in dorsal striatum and-unexpectedly-in piriform cortex.


Assuntos
Piperazinas/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/crescimento & desenvolvimento , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Animais , Imuno-Histoquímica , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Prosencéfalo/metabolismo , Ratos Wistar , Regulação para Cima
9.
Neural Plast ; 2015: 326184, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185689

RESUMO

Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases. Motor abnormalities represent a significant part of the spectrum of RTT symptoms. In the present study we investigated motor coordination and fine motor skill domains in MeCP2-308 female mice, a validated RTT model. This was complemented by the in vivo magnetic resonance spectroscopy (MRS) analysis of metabolic profile in behaviourally relevant brain areas. MeCP2-308 heterozygous female mice (Het, 10-12 months of age) were impaired in tasks validated for the assessment of purposeful and coordinated forepaw use (Morag test and Capellini handling task). A fine-grain analysis of spontaneous behaviour in the home-cage also revealed an abnormal handling pattern when interacting with the nesting material, reduced motivation to explore the environment, and increased time devoted to feeding in Het mice. The brain MRS evaluation highlighted decreased levels of bioenergetic metabolites in the striatal area in Het mice compared to controls. Present results confirm behavioural and brain alterations previously reported in MeCP2-308 males and identify novel endpoints on which the efficacy of innovative therapeutic strategies for RTT may be tested.


Assuntos
Membro Anterior , Destreza Motora , Síndrome de Rett/psicologia , Animais , Comportamento Animal , Peso Corporal/genética , Química Encefálica/fisiologia , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Genótipo , Espectroscopia de Ressonância Magnética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Motivação , Neostriado/metabolismo , Comportamento de Nidação , Desempenho Psicomotor , Síndrome de Rett/genética
10.
Neurobiol Dis ; 68: 66-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24769161

RESUMO

Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.


Assuntos
Lesões Encefálicas/etiologia , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Estresse Oxidativo/fisiologia , Síndrome de Rett/complicações , Síndrome de Rett/genética , Aldeídos/metabolismo , Análise de Variância , Animais , Ácido Araquidônico/metabolismo , Lesões Encefálicas/sangue , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Isoprostanos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nestina/genética , Neuroprostanos/metabolismo , Síndrome de Rett/sangue
11.
Rev Neurosci ; 25(3): 401-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24622785

RESUMO

The serotonin 7 (5-HT7) receptor was the last serotonin receptor subtype to be discovered in 1993. This receptor system has been implicated in several central nervous system (CNS) functions, including circadian rhythm, rapid eye movement sleep, thermoregulation, nociception, memory and neuropsychiatric symptoms and pathologies, such as anxiety, depression and schizophrenia. In 1999, medicinal chemistry efforts led to the identification of SB-269970, which became the gold standard selective 5-HT7 receptor antagonist, and later of various selective agonists such as AS-19, LP-44, LP-12, LP-211 and E-55888. In this review, we summarize the preclinical pharmacological studies performed using these agonists, highlighting their strengths and weaknesses. The data indicate that 5-HT7 receptor agonists can have neuroprotective effects against N-methyl-d-aspartate-induced toxicity, modulate neuronal plasticity in rats, enhance morphine-induced antinociception and alleviate hyperalgesia consecutive to nerve lesion in neuropathic animals.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Doenças do Sistema Nervoso/tratamento farmacológico , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/uso terapêutico , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Humanos , Aprendizagem/efeitos dos fármacos , Doenças do Sistema Nervoso/prevenção & controle , Ratos , Agonistas do Receptor de Serotonina/química , Agonistas do Receptor de Serotonina/farmacologia
12.
Rev Neurosci ; 25(3): 383-400, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24598832

RESUMO

The serotonin receptor 7 (5-HT7-R) plays important functional roles in learning and memory, in regulation of mood and circadian rhythmicity. LP-211 is a new selective agonist, belonging to 1-arylpiperazine category. We report studies aimed to evaluate the modulatory effect of a subchronic regimen on behavioral/molecular parameters. At low dose [0.25 mg/kg intraperitoneally (i.p.)], LP-211 induced a 6-h anticipated wake up in adult mice (with no temporal landmark by constant light), acting as nonphotic stimulus for 'internal clock' resetting. In standard 12:12-h light/dark cycle, a subchronic effect (5-6 days at 0.25 mg/kg, once per day) was observed: delayed wake up, reduced peak of locomotor activity and no evidence for brain cellular proliferation after ex vivo analysis. Other studies in rats were aimed to investigate long-term effects of developmental LP-211 administration into adulthood. Subchronic LP-211 (0.125 mg/kg i.p. once per day during the prepuberal phase) reduced l-glutamate, N-methyl-d-aspartate receptor 1 and dopamine transporter within the ventral striatum. With LP-211 (0.25 mg/kg i.p. once per day during the postpuberal phase), clear reductions were observed in the immunoreactivity of serotonin transporter and dopaminergic D2 receptors in the ventral and dorsal striatum, respectively. Subchronic LP-211 in rats and mice appears to be a suitable tool for studying the role of 5-HT7-R in sleep disorders, emotional/motivational regulations, attentive processes and executive functions.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Receptores de Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Camundongos , Piperazinas/farmacologia , Ratos , Receptores de Dopamina D2/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Fatores de Tempo
13.
Exp Eye Res ; 128: 109-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25150087

RESUMO

Exposure to Stimulating Environments (SE) during development may improve neuroplasticity in central nervous system, protect against neurotoxic damage, and promote neuronal recovery in adult life. While biochemical mechanisms of SE-promoted neuronal plasticity are well known in the brain, much less is known on the signaling cascade governing plasticity and neuroprotection in the retina. In order to investigate if in the retina signaling molecules involved in neuronal plasticity are affected by SE, neonatal CD-1 mice were exposed to moderate corticosterone levels (NC), supplemented through maternal milk during the first postnatal week, or to environmental enrichment (EE) conditions (physical and social stimuli) from early adolescence. Our results showed that both NC and EE increased the phosphorylation level of Extracellularly Regulated Kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) in the adult retinal tissue. Furthermore, we observed that activated ERK1/2 was restricted to Müller cells, while pCREB was mostly present in the nuclei of retinal neurons. Neither NC, nor EE modified the expression of GFAP, a marker of Müller cells activation. In conclusion our results indicate that both NC and EE activate ERK1/2 and CREB in the retina and provide a biochemical background for the neuroprotective activity exerted by SE against retinal damage. Furthermore, they support the role of Müller glia as a key cell determinant of retinal neuroplasticity.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína de Ligação a CREB/metabolismo , Corticosterona/farmacologia , Exposição Ambiental , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Retina/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Eletroforese em Gel de Poliacrilamida , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação , Gravidez , Retina/metabolismo , Neurônios Retinianos
14.
Synapse ; 68(4): 159-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24273138

RESUMO

We report here the results of studies aimed to investigate the involvement of serotonin receptor 7 subtype (5-HT7-R) in the modulation of emotional response in Naples High-Excitability (NHE) rat, a validated model for hyperactivity and impaired attention. A range of dosages (0.0, 0.125, 0.250, or 0.500 mg/kg) of LP-211, a selective agonist of 5-HT7-Rs, has been evaluated in animals at different age (adolescence and adulthood). Male NHE and random bred (NRB) control rats were tested in an Elevated Zero-Maze (EZM) after LP-211 treatment in two different regimens: at the issue of adolescent, subchronic exposure (14 intraperitoneal [i.p.] injections, once/day, pnd 31-44, tested on pnd 45--Exp. 1) or as adult, acute effect (15 min after i.p. injection--Exp. 2). Adolescent, subchronic LP-211 at 0.500 mg/kg dosage increased the frequency of head-dips only in NHE rats. Drug effect on time spent and entries in open EZM quadrants were revealed with adult, acute administration of 0.125 mg/kg LP-211 (both strains), indicating a tendency toward anxiolytic effects. In conclusion, data demonstrate that subchronic stimulation of 5-HT7-Rs during prepuberal period increases novelty-seeking/risk-taking propensity in NHE adults. These sequels are revealing increased disinhibition and/or motivation to explore in the NHE rats, which are characterized by a hyperactive dopaminergic system. These data may open new perspectives in studying mechanism of risk-seeking behavior.


Assuntos
Emoções/efeitos dos fármacos , Piperazinas/farmacologia , Receptores de Serotonina/metabolismo , Assunção de Riscos , Agonistas do Receptor de Serotonina/farmacologia , Fatores Etários , Animais , Atenção/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
15.
Bioorg Med Chem Lett ; 23(22): 6083-6, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24100077

RESUMO

Here we report the synthesis, pharmacological and pharmacokinetic evaluation of a pilot set of compounds structurally related to the potent and selective 5-HT7 ligand LP-211. Among the studied compounds, N-pyridin-3-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (4b) showed high affinity for 5-HT7 receptors (K(i)=23.8 nM), selectivity over 5-HT1A receptors (>50-fold), in vitro metabolic stability (82%) and weak interaction with P-glycoprotein (BA/AB=3.3). Compound 4b was injected ip in mice to preliminarily evaluate its distribution between blood and brain.


Assuntos
Piperazinas/síntese química , Piperazinas/farmacologia , Receptores de Serotonina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Amidas/sangue , Amidas/síntese química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Humanos , Ligantes , Masculino , Camundongos , Piperazinas/sangue , Piperazinas/farmacocinética , Ensaio Radioligante , Receptores de Serotonina/química , Relação Estrutura-Atividade
16.
Children (Basel) ; 10(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980142

RESUMO

Attention-deficit/hyperactivity disorder (ADHD), a neuropsychiatric condition characterized by inattention, hyperactivity, and impulsivity, afflicts 5% of children worldwide. Each ADHD patient presents with individual cognitive and motivational peculiarities. Furthermore, choice of appropriate therapy is still up to clinicians, who express somewhat qualitative advice on whether a child is being successfully cured or not: it would be more appropriate to use an objective biomarker to indicate whether a treatment led to benefits or not. The aim of our work is to search for such clinical biomarkers. We recruited 60 ADHD kids; psychopathological scales were administered at recruitment and after six weeks of therapy. Out of such a cohort of ADHD children, we rigorously extracted two specific subgroups; regardless of the initial severity of their disease, we compared those who obtained the largest improvement (ΔCGAS > 5) vs. those who were still characterized by a severe condition (CGAS < 40). After such a therapy, methylation levels of DNA extracted from buccal swabs were measured in the 5'-UTR of the DAT1 gene. CpGs 3 and 5 displayed, in relation to the other CpGs, a particular symmetrical pattern; for "improving" ADHD children, they were methylated together with CpG 2 and CpG 6; instead, for "severe" ADHD children, they accompanied a methylated CpG 1. These specific patterns of methylation could be used as objective molecular biomarkers of successful cures, establishing if a certain therapy is akin to a given patient (personalized medicine). Present data support the use of post-therapy molecular data obtained with non-invasive techniques.

17.
Neurosci Biobehav Rev ; 155: 105435, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913873

RESUMO

Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.


Assuntos
Doença de Alzheimer , Transtorno Obsessivo-Compulsivo , Humanos , Função Executiva , Insulina/metabolismo , Estudos Prospectivos
18.
Synapse ; 66(9): 792-806, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22588982

RESUMO

Interest is rising for animal modeling of impaired behavioral inhibition. Impulsivity and risk proneness, key symptoms of impulse-control disorders, are classically measured by Intolerance to Delay (ID) and Probabilistic Delivery (PD) tasks, requiring choice between a "Small & Soon" or "Sure" (SS) versus a "Large & Late" or "Luck-Linked" (LL or LLL, respectively) reinforcer. Several temporal parameters shall be set, which are not always explicit. Here, we focused on duration of timeout (TO; three groups: 15, 30, or 45 s; Exp. 1) and on session length (SL; three groups: 60, 90, or 120 min; Exp. 2) to determine whether these parameters may affect rats' performance in ID and PD tasks, respectively. In Exp. 1, rats' reaction to increasing experimental delays (absolute values 0-90 s, delay-equivalent odds 0 to 1.94 ± 0.11) was critically affected by TO duration: a steeper impulsivity curve was found in subjects tested with the longest TO, while random performance was elicited with too short TO. In Exp. 2, a specific "gambling" part was presented (LLL probability lower than 20%). Subjects tested with the shortest session length (60 min), who had a low number of gambling opportunities (performed trials = 84.33 ± 1.91), exhibited a profile of risk proneness, with sustained LLL preference despite high uncertainty and low payoff. Present data demonstrate that TO and SL crucially influence rats' performance in these operant tasks. Their methodological refinement is highly relevant to validate preclinical models for inhibitory-control impairments.


Assuntos
Comportamento de Escolha , Testes Neuropsicológicos , Reforço Psicológico , Incerteza , Animais , Atenção , Comportamento Animal , Comportamento Impulsivo , Masculino , Ratos , Ratos Wistar
19.
Behav Brain Funct ; 8: 54, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23192105

RESUMO

BACKGROUND: Possible interactions between nervous and immune systems in neuro-psychiatric disorders remain elusive. Levels of brain dopamine transporter (DAT) have been implicated in several impulse-control disorders, like attention deficit / hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). Here, we assessed the interplay between DAT auto-immunity and behavioural / neurochemical phenotype. METHODS: Male CD-1 mice were immunized with DAT peptide fragments (DAT-i), or vehicle alone (VEH), to generate elevated circulating levels of DAT auto-antibodies (aAbs). Using an operant delay-of-reward task (20 min daily sessions; timeout 25 sec), mice had a choice between either an immediate small amount of food (SS), or a larger amount of food after a delay (LL), which increased progressively across sessions (from 0 to 150 sec). RESULTS: DAT-i mice exhibited spontaneous hyperactivity (2 h-longer wake-up peak; a wake-up attempt during rest). Two sub-populations differing in behavioural flexibility were identified in the VEH control group: they showed either a clear-cut decision to select LL or clear-cut shifting towards SS, as expected. Compared to VEH controls, choice-behaviour profile of DAT-i mice was markedly disturbed, together with long-lasting alterations of the striatal monoamines. Enhanced levels of DA metabolite HVA in DAT-i mice came along with slower acquisition of basal preferences and with impaired shifting; elevation also in DOPAC levels was associated with incapacity to change a rigid selection strategy. This scarce flexibility of performance is indicative of a poor adaptation to task contingencies. CONCLUSIONS: Hyperactivity and reduced cognitive flexibility are patterns of behaviour consistent with enduring functional impairment of striatal regions. It is yet unclear how anti-DAT antibodies could enter or otherwise affect these brain areas, and which alterations in DAT activity exactly occurred after immunization. Present neuro-behavioural alterations, coming along with an experimentally-induced rise of circulating DAT-directed aAbs, open the issue of a potential role for auto-immunity in vulnerability to impulse-control disorders.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Corpo Estriado/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Hipercinese/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Animais , Cognição/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Comportamento Exploratório/fisiologia , Hipercinese/metabolismo , Imunização , Masculino , Camundongos , Fragmentos de Peptídeos/metabolismo , Recompensa
20.
Am J Primatol ; 74(11): 1028-34, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22833283

RESUMO

Genetic variation in the human serotonin system has long been studied because of its functional consequences and links to various neuropsychiatric and behavior-related disorders. Among non-human primates, the common marmosets (Callithrix jacchus) and tufted capuchins monkeys (Cebus apella) are becoming increasingly used as models to study the effects of genes, environments, and their interaction on physiology and complex behavior. In order to investigate the independent functions of and potential interactions between serotonin-related genes, anxiety and neuropsychiatric disorders, we analyzed the presence and variability of the serotonin transporter gene-linked polymorphic region (5-HTTLPR) in marmoset and capuchin monkeys. By PCR and using heterologous primers from the human sequence, we amplified and then sequenced the corresponding 5-HTT region in marmosets and capuchins. The resulting data revealed the presence of a tandem repeat sequence similar to that described in humans, but unlike humans and other Old World primates, no variable length alleles were detected in these New World monkeys, suggesting that if serotonin transporter is involved in modulating behavior in these animals it does so through different molecular mechanisms.


Assuntos
Callithrix/genética , Cebus/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Animais , Sequência de Bases , Sequência Conservada , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA