Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Chembiochem ; 24(2): e202200334, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394122

RESUMO

Electrochemical arrays were used to measure the overflow of serotonin (5-HT) and melatonin (MEL) from the entire colon of healthy mice and mice with chemical-induced inflammatory bowel disease (IBD), to understand the interplay between inflammation and colonic function. We show that 5-HT overflow is increased, whilst MEL levels are reduced, in inflamed tissues. The levels of MEL are increased at the interface between healthy and inflamed regions within the colon and may limit the spread of inflammation. Understanding the interplay between inflammation and mucosal epithelial signalling can provide key insight into colonic function and aid the development of effective therapeutic strategies to treat gastrointestinal diseases.


Assuntos
Melatonina , Serotonina , Camundongos , Animais , Mucosa Intestinal , Inflamação , Epitélio
2.
Adv Exp Med Biol ; 1383: 329-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587170

RESUMO

Because of their importance in the regulation of gut functions, several therapeutic targets involving serotonin-related proteins have been developed or repurposed to treat motility disorders, including serotonin transporter inhibitors, tryptophan hydroxylase blockers, 5-HT3 antagonists, and 5-HT4 agonists. This chapter focuses on our discovery of 5-HT4 receptors in the epithelial cells of the colon and our efforts to evaluate the effects of stimulating these receptors. 5-HT4 receptors appear to be expressed by all epithelial cells in the mouse colon, based on expression of a reporter gene driven by the 5-HT4 receptor promoter. Application of 5-HT4 agonists to the mucosal surface causes serotonin release from enterochromaffin cells, mucus secretion from goblet cells, and chloride secretion from enterocytes. Luminal administration of 5-HT4 agonists speeds up colonic motility and suppresses distention-induced nociceptive responses. Luminal administration of 5-HT4 agonists also decreases the development of, and improves recovery from, experimental colitis. Recent studies determined that the prokinetic actions of minimally absorbable 5-HT4 agonists are just as effective as absorbable compounds. Collectively, these findings indicate that targeting epithelial receptors with non-absorbable 5-HT4 agonists could offer a safe and effective strategy for treating constipation and colitis.


Assuntos
Colite , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Agonistas do Receptor 5-HT4 de Serotonina/metabolismo , Constipação Intestinal/tratamento farmacológico , Receptores 5-HT4 de Serotonina/metabolismo , Colo/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/metabolismo , Motilidade Gastrointestinal/fisiologia
3.
J Biol Chem ; 295(10): 3134-3147, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005666

RESUMO

The actin cytoskeleton is a dynamic array of filaments that undergoes rapid remodeling to drive many cellular processes. An essential feature of filament remodeling is the spatio-temporal regulation of actin filament nucleation. One family of actin filament nucleators, the Diaphanous-related formins, is activated by the binding of small G-proteins such as RhoA. However, RhoA only partially activates formins, suggesting that additional factors are required to fully activate the formin. Here we identify one such factor, IQ motif containing GTPase activating protein-1 (IQGAP1), which enhances RhoA-mediated activation of the Diaphanous-related formin (DIAPH1) and targets DIAPH1 to the plasma membrane. We find that the inhibitory intramolecular interaction within DIAPH1 is disrupted by the sequential binding of RhoA and IQGAP1. Binding of RhoA and IQGAP1 robustly stimulates DIAPH1-mediated actin filament nucleation in vitro In contrast, the actin capping protein Flightless-I, in conjunction with RhoA, only weakly stimulates DIAPH1 activity. IQGAP1, but not Flightless-I, is required to recruit DIAPH1 to the plasma membrane where actin filaments are generated. These results indicate that IQGAP1 enhances RhoA-mediated activation of DIAPH1 in vivo Collectively these data support a model where the combined action of RhoA and an enhancer ensures the spatio-temporal regulation of actin nucleation to stimulate robust and localized actin filament production in vivo.


Assuntos
Actinas/metabolismo , Forminas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Forminas/antagonistas & inibidores , Forminas/genética , Humanos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Proteínas Ativadoras de ras GTPase/genética , Proteína rhoA de Ligação ao GTP/metabolismo
4.
BMC Gastroenterol ; 21(1): 281, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238227

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) is a promising new strategy in the treatment of Inflammatory Bowel Disease, but long-term delivery systems are lacking. This randomized study was designed as a safety and feasibility study of long-term FMT in subjects with mild to moderate UC using frozen, encapsulated oral FMT (cFMT). METHODS: Subjects were randomized 1:1 to receive FMT induction by colonoscopy, followed by 12 weeks of daily oral administration of frozen encapsulated cFMT or sham therpay. Subjects were followed for 36 weeks and longitudenal clinical assessments included multiple subjective and objective markers of disease severity. Ribosomal 16S bacterial sequencing was used to assess donor-induced changes in the gut microbiota. Changes in T regulatory (Treg) and mucosal associated invariant T (MAIT) cell populations were evaluated by flow cytometry as an exploratory endpoint. RESULTS: Twelve subjects with active UC were randomized: 6 subjects completed the full 12-week course of FMT plus cFMT, and 6 subjects received sham treatment by colonic installation and longitudinal oral placebo capules. Chronic administration of cFMT was found to be safe and well-tolerated but home storage concerns exist. Protocol adherence was high, and none of the study subjects experienced FMT-associated treatment emergent adverse events. Two subjects that received cFMT achieved clinical remission versus none in the placebo group (95% CI = 0.38-infinity, p = 0.45). cFMT was associated with sustained donor-induced shifts in fecal microbial composition. Changes in MAIT cell cytokine production were observed in cFMT recipients and correlated with treatment response. CONCLUSION: These pilot data suggest that daily encapsulated cFMT may extend the durability of index FMT-induced changes in gut bacterial community structure and that an association between MAIT cell cytokine production and clinical response to FMT may exist in UC populations. Oral frozen encapsulated cFMT is a promising FMT delivery system and may be preferred for longterm treatment strategies in UC and other chronic diseases but further evaluations will have to address home storage concerns. Larger trials should be done to explore the benefits of cFMT and to determine its long-term impacts on the colonic microbiome. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02390726). Registered 17 March 2015, https://clinicaltrials.gov/ct2/show/NCT02390726?term=NCT02390726&draw=2&rank=1 .


Assuntos
Colite Ulcerativa , Transplante de Microbiota Fecal , Colite Ulcerativa/terapia , Fezes , Humanos , Projetos Piloto , Estudos Prospectivos , Resultado do Tratamento
5.
Genes Immun ; 21(5): 311-325, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32848229

RESUMO

Inflammatory bowel disease (IBD) is a complex disorder that imposes a growing health burden. Multiple genetic associations have been identified in IBD, but the mechanisms underlying many of these associations are poorly understood. Animal models are needed to bridge this gap, but conventional laboratory mouse strains lack the genetic diversity of human populations. To more accurately model human genetic diversity, we utilized a panel of chromosome (Chr) substitution strains, carrying chromosomes from the wild-derived and genetically divergent PWD/PhJ (PWD) strain on the commonly used C57BL/6J (B6) background, as well as their parental B6 and PWD strains. Two models of IBD were used, TNBS- and DSS-induced colitis. Compared with B6 mice, PWD mice were highly susceptible to TNBS-induced colitis, but resistant to DSS-induced colitis. Using consomic mice, we identified several PWD-derived loci that exhibited profound effects on IBD susceptibility. The most pronounced of these were loci on Chr1 and Chr2, which yielded high susceptibility in both IBD models, each acting at distinct phases of the disease. Leveraging transcriptomic data from B6 and PWD immune cells, together with a machine learning approach incorporating human IBD genetic associations, we identified lead candidate genes, including Itga4, Pip4k2a, Lcn10, Lgmn, and Gpr65.


Assuntos
Colite Ulcerativa/genética , Loci Gênicos , Predisposição Genética para Doença , Animais , Colite Ulcerativa/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo Genético , Transcriptoma
6.
J Biol Chem ; 294(49): 18639-18649, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31653703

RESUMO

Rigorous spatiotemporal regulation of cell division is required to maintain genome stability. The final stage in cell division, when the cells physically separate (abscission), is tightly regulated to ensure that it occurs after cytokinetic events such as chromosome segregation. A key regulator of abscission timing is Aurora B kinase activity, which inhibits abscission and forms the major activity of the abscission checkpoint. This checkpoint prevents abscission until chromosomes have been cleared from the cytokinetic machinery. Here we demonstrate that the mitosis-specific CDK11p58 kinase specifically forms a complex with cyclin L1ß that, in late cytokinesis, localizes to the stem body, a structure in the middle of the intercellular bridge that forms between two dividing cells. Depletion of CDK11 inhibits abscission, and rescue of this phenotype requires CDK11p58 kinase activity or inhibition of Aurora B kinase activity. Furthermore, CDK11p58 kinase activity is required for formation of endosomal sorting complex required for transport III filaments at the site of abscission. Combined, these data suggest that CDK11p58 kinase activity opposes Aurora B activity to enable abscission to proceed and result in successful completion of cytokinesis.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Western Blotting , Divisão Celular/genética , Divisão Celular/fisiologia , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Citocinese/genética , Citocinese/fisiologia , Imunofluorescência , Células HeLa , Humanos , Mitose/genética , Mitose/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Imagem com Lapso de Tempo
7.
Headache ; 60(2): 396-404, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31876298

RESUMO

OBJECTIVE: To determine whether transgenic mouse models of migraine exhibit upper gastrointestinal dysmotility comparable to those observed in migraine patients. BACKGROUND: There is considerable evidence supporting the comorbidity of gastrointestinal dysmotility and migraine. Gastrointestinal motility, however, has never been investigated in transgenic mouse models of migraine. METHODS: Three transgenic mouse strains that express pathogenic gene mutations linked to monogenic migraine-relevant phenotypes were studied: CADASIL (Notch3-Tg88), FASP (CSNK1D-T44A), and FHM1 (CACNA1A-S218L). Upper gastrointestinal motility was quantified by measuring gastric emptying and small intestinal transit in mutant and control animals. Gastrointestinal motility was measured at baseline and after pretreatment with 10 mg/kg nitroglycerin (NTG). RESULTS: No significant differences were observed for gastric emptying or small intestinal transit at baseline for any of the 3 transgenic strains when compared to appropriate controls or after pretreatment with NTG when compared to vehicle. CONCLUSIONS: We detected no evidence of upper gastrointestinal dysmotility in mice that express mutations in genes linked to monogenic migraine-relevant phenotypes. Future studies seeking to understand why humans with migraine experience delayed gastric emptying may benefit from pursuing other modifiers of gastrointestinal motility, such as epigenetic or microbiome-related factors.


Assuntos
Modelos Animais de Doenças , Gastroenteropatias , Motilidade Gastrointestinal , Transtornos de Enxaqueca , Animais , Feminino , Gastroenteropatias/etiologia , Masculino , Camundongos , Camundongos Transgênicos , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/genética
8.
Gastroenterology ; 151(5): 933-944.e3, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27480173

RESUMO

BACKGROUND & AIMS: The 5-hydroxytryptamine receptor 4 (5-HT4R or HTR4) is expressed in the colonic epithelium but little is known about its functions there. We examined whether activation of colonic epithelial 5-HT4R protects colons of mice from inflammation. METHODS: The 5-HT4R agonist tegaserod (1 mg/kg), the 5-HT4R antagonist GR113808 (1 mg/kg), or vehicle (control) were delivered by enema to wild-type or 5-HT4R knockout mice at the onset of, or during, active colitis, induced by administration of dextran sodium sulfate or trinitrobenzene sulfonic acid. Inflammation was measured using the colitis disease activity index and by histologic analysis of intestinal tissues. Epithelial proliferation, wound healing, and resistance to oxidative stress-induced apoptosis were assessed, as was colonic motility. RESULTS: Rectal administration of tegaserod reduced the severity of colitis compared with mice given vehicle, and accelerated recovery from active colitis. Rectal tegaserod did not improve colitis in 5-HT4R knockout mice, and intraperitoneally administered tegaserod did not protect wild-type mice from colitis. Tegaserod increased proliferation of crypt epithelial cells. Stimulation of 5-HT4R increased Caco-2 cell migration and reduced oxidative stress-induced apoptosis; these actions were blocked by co-administration of the 5-HT4R antagonist GR113808. In noninflamed colons of wild-type mice not receiving tegaserod, inhibition of 5-HT4Rs resulted in signs of colitis within 3 days. In these mice, epithelial proliferation decreased and bacterial translocation to the liver and spleen was detected. Daily administration of tegaserod increased motility in inflamed colons of guinea pigs and mice, whereas administration of GR113808 disrupted motility in animals without colitis. CONCLUSIONS: 5-HT4R activation maintains motility in healthy colons of mice and guinea pigs, and reduces inflammation in colons of mice with colitis. Agonists might be developed as treatments for patients with inflammatory bowel diseases.


Assuntos
Colite/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Receptores 5-HT4 de Serotonina/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT4 de Serotonina/farmacologia , Administração Retal , Animais , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana , Feminino , Cobaias , Indóis/farmacologia , Indóis/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Índice de Gravidade de Doença , Sulfonamidas/farmacologia , Ácido Trinitrobenzenossulfônico
9.
Adv Exp Med Biol ; 1033: 35-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29101650

RESUMO

The processes of bone growth and turnover are tightly regulated by the actions of various signaling molecules, including hormones, growth factors, and cytokines. Imbalances in these processes can lead to skeletal disorders such as osteoporosis or high bone mass disease. It is becoming increasingly clear that serotonin can act through a number of mechanisms, and at different locations in the body, to influence the balance between bone formation and resorption. Its actions on bone metabolism can vary, based on its site of synthesis (central or peripheral) as well as the cells and subtypes of receptors that are activated. Within the central nervous system, serotonergic neurons act via the hypothalamus to suppress sympathetic input to the bone. Since sympathetic input inhibits bone formation, brain serotonin has a net positive effect on bone growth. Gut-derived serotonin is thought to inhibit bone growth by attenuating osteoblast proliferation via activation of receptors on pre-osteoblasts. There is also evidence that serotonin can be synthesized within the bone and act to modulate bone metabolism. Osteoblasts, osteoclasts, and osteocytes all have the machinery to synthesize serotonin, and they also express the serotonin-reuptake transporter (SERT). Understanding the roles of serotonin in the tightly balanced system of bone modeling and remodeling is a clinically relevant goal. This knowledge can clarify bone-related side effects of drugs that affect serotonin signaling, including serotonin-specific reuptake inhibitors (SSRIs) and receptor agonists and antagonists, and it can potentially lead to therapeutic approaches for alleviating bone pathologies.


Assuntos
Osso e Ossos/metabolismo , Osteogênese/fisiologia , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Osteogênese/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
10.
J Biol Chem ; 290(21): 13500-9, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25829492

RESUMO

The compartmentalization of cell cycle regulators is a common mechanism to ensure the precise temporal control of key cell cycle events. For instance, many mitotic spindle assembly factors are known to be sequestered in the nucleus prior to mitotic onset. Similarly, the essential cytokinetic factor anillin, which functions at the cell membrane to promote the physical separation of daughter cells at the end of mitosis, is sequestered in the nucleus during interphase. To address the mechanism and role of anillin targeting to the nucleus in interphase, we identified the nuclear targeting motif. Here, we show that anillin is targeted to the nucleus by importin ß2 in a Ran-dependent manner through an atypical basic patch PY nuclear localization signal motif. We show that although importin ß2 binding does not regulate anillin's function in mitosis, it is required to prevent the cytosolic accumulation of anillin, which disrupts cellular architecture during interphase. The nuclear sequestration of anillin during interphase serves to restrict anillin's function at the cell membrane to mitosis and allows anillin to be rapidly available when the nuclear envelope breaks down to remodel the cellular architecture necessary for successful cell division.


Assuntos
Núcleo Celular/genética , Proteínas dos Microfilamentos/metabolismo , Mitose/fisiologia , Sinais de Localização Nuclear , beta Carioferinas/metabolismo , Membrana Celular/metabolismo , Citocinese/fisiologia , Citosol/metabolismo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Interfase/fisiologia , Proteínas dos Microfilamentos/genética , Membrana Nuclear/metabolismo , Transporte Proteico , beta Carioferinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA