Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(22): 9177-9184, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780285

RESUMO

We describe micro- and nanoelectrode array analysis with an automated version of the array microcell method (AMCM). Characterization of hundreds of electrodes, with diameters ranging from 100 nm to 2 µm, was carried out by using AMCM voltammetry and chronoamperometry. The influence of solvent evaporation on mass transport in the AMCM pipette and the resultant electrochemical response were investigated, with experimental results supported by finite element method simulations. We also describe the application of AMCM to high-throughput single-entity electrochemistry in measurements of stochastic nanoparticle impacts. Collision experiments recorded 3270 single-particle events from 671 electrodes. Data collection parameters were optimized to enable these experiments to be completed in a few hours, and the collision transient sizes were analyzed with a U-Net deep learning model. Elucidation of collision transient sizes by histograms from these experiments was enhanced due to the large sample size possible with AMCM.

2.
Langmuir ; 40(13): 7008-7020, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525827

RESUMO

The polymer brush architecture of the end-tethered polymer molecules is one of the most widely used efficient methods to regulate interfacial interactions in colloidal systems found in live matter and manufactured materials. Emerging applications of polymer brush structures require solutions to new tasks in the control of interfacial interactions. The rapid development of live cell manufacturing relies on scalable and efficient cell harvesting methods. Stimuli-responsive surfaces made of surface-grafted poly(N-isopropylacrylamide) (PNIPAM) can bind and detach the adherent cell upon changes in temperature and have been used for cell growth and harvesting. The applications are limited by the requirement to satisfy a range of PNIPAM coating characteristics that depend on the dimensions of the integrin complex in the cell membrane and the basal surface. The analysis of the microstructured surfaces, when adhesive and disjoining functions of the microdomains are decoupled, shows that many limitations of PNIPAM one-component coatings can be avoided by using a much broader range of structural characteristics of the microstructured interfaces composed of alternating disjoining PNIPAM domains and adhesive polymeric domains with cell-affinity functional groups. Temperature-controlled reversible adhesion to such microstructured interfaces is studied here experimentally with model systems of solid spherical particles and by employing simulations for solid and soft membranes interacting with the microstructured surfaces to mimic interactions with soft and solid disk-like particles.

3.
Angew Chem Int Ed Engl ; 63(30): e202405634, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742923

RESUMO

In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 µm and length varied from 50.5 µm to 146 µm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.


Assuntos
Carbono , Dopamina , Eletrodos , Impressão Tridimensional , Animais , Dopamina/análise , Carbono/química , Técnicas Eletroquímicas/instrumentação , Drosophila , Drosophila melanogaster
4.
ACS Appl Mater Interfaces ; 16(32): 42917-42930, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102288

RESUMO

Material thermal conductivity is a key factor in various applications, from thermal management to energy harvesting. With microstructure engineering being a widely used method for customizing material properties, including thermal properties, understanding and controlling the role of extended phonon-scattering defects, like grain boundaries, is crucial for efficient material design. However, systematic studies are still lacking primarily due to limited tools. In this study, we demonstrate an approach for measuring grain boundary thermal resistance by probing the propagation of thermal waves across grain boundaries with a temperature-sensitive scanning probe. The method, implemented with a spatial resolution of about 100 nm on finely grained Nb-substituted SrTiO3 ceramics, achieves a detectability of about 2 × 10-8 K m2 W-1, suitable for chalcogenide-based thermoelectrics. The measurements indicated that the thermal resistance of the majority of grain boundaries in the STiO3 ceramics is below this value. While there are challenges in improving sensitivity, considering spatial resolution and the amount of material involved in the detection, the sensitivity of the scanning probe method is comparable to that of optical thermoreflectance techniques, and the method opens up an avenue to characterize thermal resistance at the level of single grain boundaries and domain walls in a spectrum of microstructured materials.

5.
bioRxiv ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39131373

RESUMO

Epithelial cells experience long lasting loads of different magnitudes and rates. How they adapt to these loads strongly impacts tissue health. Yet, much remains unknown about their stress evolution under sustained strain. Here, by subjecting cell pairs to sustained strain, we report a bimodal stress response, where in addition to the typically observed stress relaxation, a subset of cells exhibits a dynamic tensioning process with significant elevation in stress within 100s, resembling active pulling-back in muscle fibers. Strikingly, the fraction of cells exhibiting tensioning increases with increasing strain rate. The tensioning response is accompanied by actin remodeling, and perturbation to actin abrogates it, supporting cell contractility's role in the response. Collectively, our data show that epithelial cells adjust their tensional states over short timescales in a strain-rate dependent manner to adapt to sustained strains, demonstrating that the active pulling-back behavior could be a common protective mechanism against environmental stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA