Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373440

RESUMO

The synthetic approaches to three new AMPA receptor modulators-derivatives of 1,11-dimethyl-3,6,9-triazatricyclo[7.3.1.13,11]tetradecane-4,8,12-trione-had been developed and all steps of synthesis were optimized. The structures of the compounds contain tricyclic cage and indane fragments necessary for binding with the target receptor. Their physiological activity was studied by radioligand-receptor binding analysis using [3H]PAM-43 as a reference ligand, which is a highly potent positive allosteric modulator of AMPA receptors. The results of radioligand-binding studies indicated the high potency of two synthesized compounds to bind with the same targets as positive allosteric modulator PAM-43 (at least on AMPA receptors). We suggest that the Glu-dependent specific binding site of [3H]PAM-43 or the receptor containing this site may be one of the targets of the new compounds. We also suggest that enhanced radioligand binding may indicate the existence of synergistic effects of compounds 11b and 11c with respect to PAM-43 binding to the targets. At the same time, these compounds may not compete directly with PAM-43 for its specific binding sites but bind to other specific sites of this biotarget, changing its conformation and thereby causing a synergistic effect of cooperative interaction. It can be expected that the newly synthesized compounds will also have pronounced effects on the glutamatergic system of the mammalian brain.


Assuntos
Mamíferos , Receptores de AMPA , Animais , Receptores de AMPA/química , Regulação Alostérica , Ligação Proteica , Sítios de Ligação , Ligantes , Sítio Alostérico
2.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500341

RESUMO

Positive allosteric modulators (PAMs) of AMPA receptors represent attractive candidates for the development of drugs for the treatment of cognitive and neurodegenerative disorders. Dimeric molecules have been reported to have an especially potent modulating effect, due to the U-shaped form of the AMPA receptor's allosteric binding site. In the present work, novel bis(pyrimidines) were studied as AMPA receptor modulators. A convenient and flexible preparative approach to bis(pyrimidines) containing a hydroquinone linker was elaborated, and a series of derivatives with varied substituents was obtained. The compounds were examined in the patch clamp experiments for their influence on the kainate-induced currents, and 10 of them were found to have potentiating properties. The best potency was found for 2-methyl-4-(4-((2-methyl-5,6,7,8-tetrahydroquinazolin-4-yl)oxy)phenoxy)-6,7,8,9-tetrahydro-5H-cyclohepta[d]pyrimidine, which potentiated the kainate-induced currents by up to 77% in all tested concentrations (10-12-10-6 M). The results were rationalized via the modeling of modulator complexes with the dimeric ligand binding domain of the GluA2 AMPA receptor, using molecular docking and molecular dynamics simulation. The prediction of ADMET, physicochemical, and PAINS properties of the studied bis(pyrimidines) confirmed that PAMs of this type may act as the potential lead compounds for the development of neuroprotective drugs.


Assuntos
Pirimidinas , Receptores de AMPA , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Regulação Alostérica , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia
3.
Biomolecules ; 13(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671441

RESUMO

L-Glutamic acid is the main excitatory neurotransmitter in the central nervous system (CNS). Its associated receptors localized on neuronal and non-neuronal cells mediate rapid excitatory synaptic transmission in the CNS and regulate a wide range of processes in the brain, spinal cord, retina, and peripheral nervous system. In particular, the glutamate receptors selective to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) also play an important role in numerous neurological disorders and attract close attention as targets for the creation of new classes of drugs for the treatment or substantial correction of a number of serious neurodegenerative and neuropsychiatric diseases. For this reason, the search for various types of AMPA receptor ligands and studies of their properties are attracting considerable attention both in academic institutions and in pharmaceutical companies around the world. This review focuses mainly on the advances in this area published since 2017. Particular attention is paid to the structural diversity of new chemotypes of agonists, competitive AMPA receptor antagonists, positive and negative allosteric modulators, transmembrane AMPA regulatory protein (TARP) dependent allosteric modulators, ion channel blockers as well as their binding sites. This review also presents the studies of the mechanisms of action of AMPA receptor ligands that mediate their therapeutic effects.


Assuntos
Receptores de AMPA , Receptores de Glutamato , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo
4.
Mol Neurobiol ; 57(1): 191-199, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31515692

RESUMO

A series of new positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors based on 3,7-diazabicyclo[3.3.1]nonane scaffold have been designed, synthesized, and analyzed. In electrophysiological patch clamp studies, several compounds have demonstrated a sub-nanomolar potency. Compound 4 in in vivo tests showed anti-amnestic properties in the scopolamine-induced model of amnesia in the step-through passive avoidance or maximal electroshock experiments in rats at 0.01 mg/kg showing a significant "dose-response" advantage over memantine. Based on the analysis of the flexible docking results of PAMs, the cyclothiazide-like mechanism of binding mode was suggested as the major site for the interaction with AMPA receptors.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Benzotiadiazinas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismo , Masculino , Ratos Wistar
5.
Curr Mol Pharmacol ; 13(3): 216-223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32124706

RESUMO

BACKGROUND: Currently, the most dynamic areas in the glutamate receptor system neurobiology are the identification and development of positive allosteric modulators (PAMs) of glutamate ionotropic receptors. PAM-based drugs are of great interest as promising candidates for the treatment of neurological diseases, such as epilepsy, Alzheimer's disease, schizophrenia, etc. Understanding the molecular mechanisms underlying the biological action of natural and synthetic PAMs is a key point for modifying the original chemical compounds as well as for new drug design. OBJECTIVE: We are trying to elaborate a system of molecular functional screening of ionotropic glutamate receptor probable PAMs. METHODS: The system will be based on the radioligand - receptor method of analysis and will allow rapid quantification of new AMPAR probable PAMs molecular activity. We plan to use a tritiumlabeled analogue of recently elaborated ionotropic GluR probable PAM ([3H]PAM-43) as the main radioligand. RESULTS: Here, we characterized the specific binding of the ligand and its ability to potentiate ionotropic GluR currents. The existence of at least two different sites of [3H]PAM-43 specific binding has been shown. One of the above sites is glutamate-dependent and is characterized by higher affinity. "Patchclamp" technique showed the ability of PAM-43 to potentiate ionotropic GluR currents in rat cerebellar Purkinje neurons in a concentration-dependent manner. CONCLUSION: The possibility of using PAM-43 as a model compound to study different allosteric effects of potential regulatory drugs (AMPAR allosteric regulators) was shown. [3H]PAM-43 based screening system will allow rapid selection of new AMPAR probable PAM structures and quantification of their molecular activity.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Células de Purkinje/efeitos dos fármacos , Receptores de AMPA/agonistas , Potenciais de Ação/efeitos dos fármacos , Regulação Alostérica , Sítio Alostérico , Animais , Animais não Endogâmicos , Sítios de Ligação , Agonistas de Aminoácidos Excitatórios/química , Humanos , Ligantes , Masculino , Estrutura Molecular , Técnicas de Patch-Clamp , Células de Purkinje/fisiologia , Ensaio Radioligante , Ratos
6.
Medchemcomm ; 10(9): 1615-1619, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31803402

RESUMO

The first example of a novel class of AMPA receptor positive allosteric modulators of the bis(pyrimidine) series having a hydroquinone linker has been obtained and showed a potency to increase kainate-induced currents at subnanomolar concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA