Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cochrane Database Syst Rev ; 2: CD009799, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26899152

RESUMO

BACKGROUND: Myopia (near-sightedness or short-sightedness) is a condition in which the refractive power of the eye is greater than required. The most frequent complaint of people with myopia is blurred distance vision, which can be eliminated by conventional optical aids such as spectacles or contact lenses, or by refractive surgery procedures such as photorefractive keratectomy (PRK) and laser epithelial keratomileusis (LASEK). PRK uses laser to remove the corneal stroma. Similar to PRK, LASEK first creates an epithelial flap and then replaces it after ablating the corneal stroma. The relative benefits and harms of LASEK and PRK, as shown in different trials, warrant a systematic review. OBJECTIVES: The objective of this review is to compare LASEK versus PRK for correction of myopia by evaluating their efficacy and safety in terms of postoperative uncorrected visual acuity, residual refractive error, and associated complications. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision group Trials Register) (2015 Issue 12), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to December 2015), EMBASE (January 1980 to December 2015), Latin American and Caribbean Health Sciences (LILACS) (January 1982 to December 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 15 December 2015. We used the Science Citation Index and searched the reference lists of the included trials to identify relevant trials for this review. SELECTION CRITERIA: We included in this review randomized controlled trials (RCTs) comparing LASEK versus PRK for correction of myopia. Trial participants were 18 years of age or older and had no co-existing ocular or systemic diseases that might affect refractive status or wound healing. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all reports and assessed the risk of bias of trials included in this review. We extracted data and summarized findings using risk ratios and mean differences. We used a random-effects model when we identified at least three trials, and we used a fixed-effect model when we found fewer than three trials. MAIN RESULTS: We included 11 RCTs with a total of 428 participants 18 years of age or older with low to moderate myopia. These trials were conducted in the Czech Republic, Brazil, Italy, Iran, China, Korea, Mexico, Turkey, USA, and UK. Investigators of 10 out of 11 trials randomly assigned one eye of each participant to be treated with LASEK and the other with PRK, but did not perform paired-eye (matched) analysis. Because of differences in outcome measures and follow-up times among the included trials, few trials contributed data for many of the outcomes we analyzed for this review. Overall, we judged RCTs to be at unclear risk of bias due to poor reporting; however, because of imprecision, inconsistency, and potential reporting bias, we graded the quality of the evidence from very low to moderate for outcomes assessed in this review.The proportion of eyes with uncorrected visual acuity of 20/20 or better at 12-month follow-up was comparable in LASEK and PRK groups (risk ratio (RR) 0.98, 95% confidence interval (95% CI) 0.92 to 1.05). Although the 95% CI suggests little to no difference in effect between groups, we judged the quality of the evidence to be low because only one trial reported this outcome (102 eyes). At 12 months post treatment, data from two trials suggest no difference or a possibly small effect in favor of PRK over LASEK for the proportion of eyes achieving ± 0.50 D of target refraction (RR 0.93, 95% CI 00.84 to 1.03; 152 eyes; low-quality evidence). At 12 months post treatment, one trial reported that one of 51 eyes in the LASEK group lost one line or more best-spectacle corrected visual acuity compared with none of 51 eyes in the PRK group (RR 3.00, 95% CI 0.13 to 71.96; very low-quality evidence).Three trials reported adverse outcomes at 12 months of follow-up or longer. At 12 months post treatment, three trials reported corneal haze score; however, data were insufficient and were inconsistent among the trials, precluding meta-analysis. One trial reported little or no difference in corneal haze scores between groups; another trial reported that corneal haze scores were lower in the LASEK group than in the PRK group; and one trial did not report analyzable data to estimate a treatment effect. At 24 months post treatment, one trial reported a lower, but clinically unimportant, difference in corneal haze score for LASEK compared with PRK (MD -0.22, 95% CI -0.30 to -0.14; 184 eyes; low-quality evidence). AUTHORS' CONCLUSIONS: Uncertainty surrounds differences in efficacy, accuracy, safety, and adverse effects between LASEK and PRK for eyes with low to moderate myopia. Future trials comparing LASEK versus PRK should follow reporting standards and follow correct analysis. Trial investigators should expand enrollment criteria to include participants with high myopia and should evaluate visual acuity, refraction, epithelial healing time, pain scores, and adverse events.


Assuntos
Ceratectomia Subepitelial Assistida por Laser , Miopia/cirurgia , Ceratectomia Fotorrefrativa , Adulto , Humanos , Ceratectomia Subepitelial Assistida por Laser/efeitos adversos , Ceratectomia Fotorrefrativa/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo , Acuidade Visual
2.
Cochrane Database Syst Rev ; 2: CD010469, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26866343

RESUMO

BACKGROUND: Uveitis is a term used to describe a heterogeneous group of intraocular inflammatory diseases of the anterior, intermediate, and posterior uveal tract (iris, ciliary body, choroid). Uveitis is the fifth most common cause of vision loss in high-income countries, accounting for 5% to 20% of legal blindness, with the highest incidence of disease in the working-age population.Corticosteroids are the mainstay of acute treatment for all anatomical subtypes of non-infectious uveitis and can be administered orally, topically with drops or ointments, by periocular (around the eye) or intravitreal (inside the eye) injection, or by surgical implantation. OBJECTIVES: To determine the efficacy and safety of steroid implants in people with chronic non-infectious posterior uveitis, intermediate uveitis, and panuveitis. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (Issue 10, 2015), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2015), EMBASE (January 1980 to November 2015), PubMed (1948 to November 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to November 2015), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com) (last searched 15 April 2013), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic search for studies. We last searched the electronic databases on 6 November 2015.We also searched reference lists of included study reports, citation databases, and abstracts and clinical study presentations from professional meetings. SELECTION CRITERIA: We included randomized controlled trials comparing either fluocinolone acetonide (FA) or dexamethasone intravitreal implants with standard-of-care therapy with at least six months of follow-up after treatment. We included studies that enrolled participants of all ages who had chronic non-infectious posterior uveitis, intermediate uveitis, or panuveitis with vision that was better than hand-motion. DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed studies for inclusion. Two review authors independently extracted data and assessed the risk of bias for each study. MAIN RESULTS: We included data from two studies (619 eyes of 401 participants) that compared FA implants with standard-of-care therapy. Both studies used similar standard-of-care therapy that included administration of prednisolone and, if needed, immunosuppressive agents. The studies included participants from Australia, France, Germany, Israel, Italy, Portugal, Saudi Arabia, Spain, Switzerland, Turkey, the United Kingdom, and the United States. We assessed both studies at high risk of performance and detection bias.Only one study reported our primary outcome, recurrence of uveitis at any point during the study through 24 months. The evidence, judged as moderate-quality, showed that a FA implant probably prevents recurrence of uveitis compared with standard-of-care therapy (risk ratio (RR) 0.29, 95% confidence interval (CI) 0.14 to 0.59; 132 eyes). Both studies reported safety outcomes, and moderate-quality evidence showed increased risks of needing cataract surgery (RR 2.98, 95% CI 2.33 to 3.79; 371 eyes) and surgery to lower intraocular pressure (RR 7.48, 95% CI 3.94 to 14.19; 599 eyes) in the implant group compared with standard-of-care therapy through two years of follow-up. No studies compared dexamethasone implants with standard-of-care therapy. AUTHORS' CONCLUSIONS: After considering both benefits and harms reported from two studies in which corticosteroids implants were compared with standard-of-care therapy, we are unable to conclude that the implants are superior to traditional systemic therapy for the treatment of non-infectious uveitis. These studies exhibited heterogeneity in design and outcomes that measured efficacy. Pooled findings regarding safety outcomes suggest increased risks of post-implant surgery for cataract and high intraocular pressure compared with standard-of-care therapy.


Assuntos
Corticosteroides/administração & dosagem , Prednisolona/administração & dosagem , Uveíte/tratamento farmacológico , Adulto , Doença Crônica , Implantes de Medicamento , Humanos , Imunossupressores/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Recidiva , Padrão de Cuidado
3.
Cochrane Database Syst Rev ; (2): CD010792, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25710134

RESUMO

BACKGROUND: Acanthamoeba are microscopic, free-living, single-celled organisms which can infect the eye and lead to Acanthamoeba keratitis (AK). AK can result in loss of vision in the infected eye or loss of eye itself; however, there are no formal guidelines or standards of care for the treatment of AK. OBJECTIVES: To evaluate the relative effectiveness and safety of medical therapy for the treatment of AK. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2015, Issue 1), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to January 2015), EMBASE (January 1980 to January 2015), PubMed (1948 to January 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to January 2015), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic search for trials. We last searched the electronic databases on 9 January 2015. SELECTION CRITERIA: We included randomized controlled trials (RCTs) of medical therapy for AK, regardless of the participants' age, sex, or etiology of disease. We included studies that compared either anti-amoeba therapy (drugs used alone or in combination with other medical therapies) with no anti-amoeba therapy or one anti-amoeba therapy with another anti-amoeba therapy. DATA COLLECTION AND ANALYSIS: Two authors independently screened search results and full-text reports, assessed risk of bias, and abstracted data. We used standard methodological procedures as set forth by the Cochrane Collaboration. MAIN RESULTS: We included one RCT (56 eyes of 55 participants) in this review. The study compared two types of topical biguanides for the treatment of AK: chlorhexidine 0.02% and polyhexamethylene biguanide (PHMB) 0.02%. All participants were contact lens wearers with a median age of 31 years. Treatment duration ranged from 51 to 145 days. The study, conducted in the UK, was well-designed and had low risk of bias overall.Outcome data were available for 51 (91%) of 56 eyes. Follow-up times for outcome measurements in the study were not reported. Resolution of infection, defined as control of ocular inflammation, relief of pain and photosensitivity, and recovery of vision, was 86% in the chlorhexidine group compared with 78% in the PHMB group (relative risk (RR) 1.10, 95% confidence intervals (CI) 0.84 to 1.42). In the chlorhexidine group, 20 of 28 eyes (71%) had better visual acuity compared with 13 of 23 eyes (57%) in the PHMB group at final follow-up (RR 1.26, 95% CI 0.82 to 1.94). Five participants required therapeutic keratoplasty: 2 in the chlorhexidine group compared with 3 in the PHMB group (RR 0.55, 95% CI 0.10 to 3.00). No serious adverse event related to drug toxicity was observed in the study. AUTHORS' CONCLUSIONS: There is insufficient evidence to evaluate the relative effectiveness and safety of medical therapy for the treatment of AK. Results from the one included study yielded no difference with respect to outcomes reported between chlorhexidine and PHMB. However, the sample size was inadequate to detect clinically meaningful differences between the two groups as indicated by the wide confidence intervals of effect estimates.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Anti-Infecciosos Locais/uso terapêutico , Biguanidas/uso terapêutico , Clorexidina/uso terapêutico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Cochrane Database Syst Rev ; (12): CD011841, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26691378

RESUMO

BACKGROUND: Central serous chorioretinopathy (CSC) is characterized by serous detachment of the neural retina with dysfunction of the choroid and retinal pigment epithelium (RPE). The effects on the retina are usually self limited, although some people are left with irreversible vision loss due to progressive and permanent photoreceptor damage or RPE atrophy. There have been a variety of interventions used in CSC, including, but not limited to, laser treatment, photodynamic therapy (PDT), and intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents. However, it is not known whether these or other treatments offer significant advantages over observation or other interventions. At present there is no evidence-based consensus on the management of CSC. Due in large part to the propensity for CSC to resolve spontaneously or to follow a waxing and waning course, the most common initial approach to treatment is observation. It remains unclear whether this is the best approach with regard to safety and efficacy. OBJECTIVES: To compare the relative effectiveness of interventions for central serous chorioretinopathy. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2015, Issue 9), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to October 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 October 2015. SELECTION CRITERIA: Randomized controlled trials (RCTs) that compared any intervention for CSC with any other intervention for CSC or control. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies and extracted data. We pooled data from all studies using a fixed-effect model. For interventions applied to the eye (i.e. not systemic interventions), we synthesized direct and indirect evidence in a network meta-analysis model. MAIN RESULTS: We included 25 studies with 1098 participants (1098 eyes) and follow-up from 16 weeks to 12 years. Studies were conducted in Europe, North and South America, Middle East, and Asia. The trials were small (most trials enrolled fewer than 50 participants) and poorly reported; often it was unclear whether key aspects of the trial, such as allocation concealment, had been done. A substantial proportion of the trials were not masked.The studies considered a variety of treatments: anti-VEGF (ranibizumab, bevacizumab), PDT (full-dose, half-dose, 30%, low-fluence), laser treatment (argon, krypton and micropulse laser), beta-blockers, carbonic anhydrase inhibitors, Helicobactor pylori treatment, and nutritional supplements (Icaps, lutein); there were only one or two trials contributing data for each comparison. We downgraded for risk of bias and imprecision for most analyses, reflecting study limitations and imprecise estimates. Network meta-analysis (as planned in our protocol) did not help to resolve this uncertainty due to a lack of trials, and problems with intransitivity, particularly with respect to acute or chronic CSC.Low quality evidence from two trials suggested little difference in the effect of anti-VEGF (ranibizumab or bevacizumab) or observation on change in visual acuity at six months in acute CSC (mean difference (MD) 0.01 LogMAR (logarithm of the minimal angle of resolution), 95% confidence interval (CI) -0.02 to 0.03; 64 participants). CSC had resolved in all participants by six months. There were no significant adverse effects noted.Low quality evidence from one study (58 participants) suggested that half-dose PDT treatment of acute CSC probably results in a small improvement in vision (MD -0.10 logMAR, 95% CI -0.18 to -0.02), less recurrence (risk ratio (RR) 0.10, 95% CI 0.01 to 0.81) and less persistent CSC (RR 0.12, 95% CI 0.01 to 1.02) at 12 months compared to sham treatment. There were no significant adverse events noted.Low quality evidence from two trials (56 participants) comparing anti-VEGF to low-fluence PDT in chronic CSC found little evidence for any difference in visual acuity at 12 months (MD 0.03 logMAR, 95% CI -0.08 to 0.15). There was some evidence that more people in the anti-VEGF group had recurrent CSC compared to people treated with PDT but, due to inconsistency between trials, it was difficult to estimate an effect. More people in the anti-VEGF group had persistent CSC at 12 months (RR 6.19, 95% CI 1.61 to 23.81; 34 participants).Two small trials of micropulse laser, one in people with acute CSC and one in people with chronic CSC, provided low quality evidence that laser treatment may lead to better visual acuity (MD -0.20 logMAR, 95% CI -0.30 to -0.11; 45 participants). There were no significant adverse effects noted.Other comparisons were largely inconclusive.We identified 12 ongoing trials covering the following interventions: aflibercept and eplerenone in acute CSC; spironolactone, eplerenone, lutein, PDT, and micropulse laser in chronic CSC; and micropulse laser and oral mifepristone in two trials where type of CSC not clearly specified. AUTHORS' CONCLUSIONS: CSC remains an enigmatic condition in large part due to a natural history of spontaneous improvement in a high proportion of people and also because no single treatment has provided overwhelming evidence of efficacy in published RCTs. While a number of interventions have been proposed as potentially efficacious, the quality of study design, execution of the study and the relatively small number of participants enrolled and followed to revealing endpoints limits the utility of existing data. It is not clear whether there is a clinically important benefit to treating acute CSC which often resolves spontaneously as part of its natural history. RCTs comparing individual treatments to the natural history would be valuable in identifying potential treatment groups for head-to-head comparison. Of the interventions studied to date, PDT or micropulse laser treatment appear the most promising for study in future trials.


Assuntos
Coriorretinopatia Serosa Central/terapia , Inibidores da Anidrase Carbônica/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori , Humanos , Terapia a Laser/métodos , Fotoquimioterapia/métodos , Propranolol/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Remissão Espontânea , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual , Conduta Expectante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA