RESUMO
Staphylococcus saprophyticus is a primary cause of community-acquired urinary tract infections (UTIs) in young women. S. saprophyticus colonizes humans and animals but basic features of its molecular epidemiology are undetermined. We conducted a phylogenomic analysis of 321 S. saprophyticus isolates collected from human UTIs worldwide during 1997-2017 and 232 isolates from human UTIs and the pig-processing chain in a confined region during 2016-2017. We found epidemiologic and genomic evidence that the meat-production chain is a major source of S. saprophyticus causing human UTIs; human microbiota is another possible origin. Pathogenic S. saprophyticus belonged to 2 lineages with distinctive genetic features that are globally and locally disseminated. Pangenome-wide approaches identified a strong association between pathogenicity and antimicrobial resistance, phages, platelet binding proteins, and an increased recombination rate. Our study provides insight into the origin, transmission, and population structure of pathogenic S. saprophyticus and identifies putative new virulence factors.
Assuntos
Infecções Comunitárias Adquiridas , Infecções Estafilocócicas , Infecções Urinárias , Animais , Humanos , Staphylococcus saprophyticus , Suínos , Fatores de VirulênciaRESUMO
Staphylococcus saprophyticus is a common pathogen of the urinary tract, a heavy metal-rich environment, but information regarding its heavy metal resistance is unknown. We investigated 422 S. saprophyticus isolates from human infection and colonization/contamination, animals, and environmental sources for resistance to copper, zinc, arsenic, and cadmium using the agar dilution method. To identify the genes associated with metal resistance and assess possible links to pathogenicity, we accessed the whole-genome sequence of all isolates and used in silico and pangenome-wide association approaches. The MIC values for copper and zinc were uniformly high (1,600 mg/liter). Genes encoding copper efflux pumps (copA, copB, copZ, mco, and csoR) and zinc transporters (zinT, czrAB, znuBC, and zur) were abundant in the population (20 to 100%). Arsenic and cadmium showed various susceptibility levels. Genes encoding the ars operon (arsRDABC), an ABC transporter and a two-component permease, were linked to resistance to arsenic (MICs ≥ 1,600 mg/liter; 14% [58/422]; P < 0.05). At least three cad genes (cadA or cadC and cadD-cadX or czrC) and genes encoding multidrug efflux pumps and hyperosmoregulation in acidified conditions were associated with resistance to cadmium (MICs ≥ 200 mg/liter; 20% [85/422]; P < 0.05). These resistance genes were frequently carried by mobile genetic elements. Resistance to arsenic and cadmium were linked to human infection and a clonal lineage originating in animals (P < 0.05). Altogether, S. saprophyticus was highly resistant to heavy metals and accumulated multiple metal resistance determinants. The highest arsenic and cadmium resistance levels were associated with infection, suggesting resistance to these metals is relevant for S. saprophyticus pathogenicity.
Assuntos
Arsênio , Metais Pesados , Animais , Cádmio , Cobre , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus saprophyticusRESUMO
OBJECTIVE: Vibrio cholerae is an enteric pathogen that poses a significant threat to global health. It causes severe dehydrating diarrheal disease cholera in humans. V. cholerae could be acquired either from consuming contaminated seafood or direct contact with polluted waters. As part of a larger program that assesses the microbial community profile in aquatic systems, V. cholerae strain NB-183 was isolated and characterized using a combination of culture- and whole-genome sequencing-based approaches. DATA DESCRIPTION: Here we report the assembled and annotated whole-genome sequence of a V. cholerae strain NB-183 isolated from a recreational freshwater lake in Ontario, Canada. The genome was sequenced using short-read Illumina systems. The whole-genome sequencing yielded 4,112,549 bp genome size with 99 contigs with an average genome coverage of 96× and 47.42% G + C content. The whole genome-based comparison, phylogenomic and gene repertoire indicates that this strain harbors multiple virulence genes and biosynthetic gene clusters. This genome sequence and its associated datasets provided in this study will be an indispensable resource to enhance the understanding of the functional, ecological, and evolutionary dynamics of V. cholerae.
Assuntos
Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Ontário , Virulência/genética , Água DoceRESUMO
Nontyphoidal Salmonella enterica serovars are foodborne pathogens commonly transmitted through poultry products. Draft genome sequences of three Salmonella enterica subsp. enterica serovar Shamba isolates which were obtained from poultry house dust in South Africa are reported herein.
RESUMO
Salmonella enterica is a zoonotic pathogen and a leading cause of foodborne gastroenteritis in humans. Here, we report the draft genome sequences of two Salmonella Uzaramo isolates, which were isolated from poultry organs during routine post-mortem examination in South Africa. Currently, whole-genome sequences on Salmonella Uzaramo are scanty.
RESUMO
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I-VI toxin-antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods.
RESUMO
Proteus mirabilis is a Gram-negative bacterium that is frequently implicated in urinary tract infections in humans and companion animals and has also been associated with foodborne infections in several countries. Here, we report the draft genome sequences of two P. mirabilis isolates recovered from municipal wastewater.
RESUMO
Exiguobacterium spp. are facultative anaerobic, Gram-positive, non-spore-forming bacilli, reported to tolerate extreme environments. Here, we report the draft genome sequence of Exiguobacterium sp. strain N5, isolated from a recreational freshwater lake.
RESUMO
Bacillus anthracis is widespread in soil and a causative agent of anthrax, primarily in herbivores. Here, we report the draft genome sequence of Bacillus anthracis strain N1, which was isolated from a recreational freshwater lake and found to carry multiple antibiotic resistance genes and biosynthetic gene clusters.
RESUMO
A comparative genomic analysis was conducted for 171 Salmonella isolates recovered from raw inshell almonds and raw almond kernels between 2001 and 2013 and for 30 Salmonella Enteritidis phage type (PT) 30 isolates recovered between 2001 and 2006 from a 2001 salmonellosis outbreak-associated almond orchard. Whole genome sequencing was used to measure the genetic distance among isolates by single nucleotide polymorphism (SNP) analyses and to predict the presence of plasmid DNA and of antimicrobial resistance (AMR) and virulence genes. Isolates were classified by serovars with Parsnp, a fast core-genome multi aligner, before being analyzed with the CFSAN SNP Pipeline (U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition). Genetically similar (≤18 SNPs) Salmonella isolates were identified among several serovars isolated years apart. Almond isolates of Salmonella Montevideo (2001 to 2013) and Salmonella Newport (2003 to 2010) differed by ≤9 SNPs. Salmonella Enteritidis PT 30 isolated between 2001 and 2013 from survey, orchard, outbreak, and clinical samples differed by ≤18 SNPs. One to seven plasmids were found in 106 (62%) of the Salmonella isolates. Of the 27 plasmid families that were identified, IncFII and IncFIB plasmids were the most predominant. AMR genes were identified in 16 (9%) of the survey isolates and were plasmid encoded in 11 of 16 cases; 12 isolates (7%) had putative resistance to at least one antibiotic in three or more drug classes. A total of 303 virulence genes were detected among the assembled genomes; a plasmid that harbored a combination of pef, rck, and spv virulence genes was identified in 23% of the isolates. These data provide evidence of long-term survival (years) of Salmonella in agricultural environments.
Assuntos
Prunus dulcis , Salmonella enterica , Estados Unidos , Humanos , Salmonella enterica/genética , Prunus dulcis/genética , Salmonella enteritidis/genética , California/epidemiologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Azoles are major antifungals in agriculture and medicine. However, the surge of intrinsic azole resistance is critical for public health. Here, we present the complete long-read sequencing of three azole-resistant Penicillium rubens from food crops. The presence of CYP51A and ERG11 paralogues was confirmed, as in other azole-resistant P. rubens.
RESUMO
Clostridium botulinum is responsible for botulism, a potentially lethal foodborne intoxication. Here, we report the draft genome sequences of C. botulinum group II strains 202F (serotype F) and Hazen (serotype E). The genomes share many similarities, including multiple mobile genetic elements.
RESUMO
We report metagenomic sequencing analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in composite wastewater influent from 10 regions in Ontario, Canada, during the transition between Delta and Omicron variants of concern. The Delta and Omicron BA.1/BA.1.1 and BA.2-defining mutations occurring in various frequencies were reported in the consensus and subconsensus sequences of the composite samples.
RESUMO
Staphylococcus species colonises humans and animals and is a major food contaminant with public health significance. Here, we assessed the occurrence of methicillin-resistant staphylococci (MRS) in the pig-production chain in Ibadan, Nigeria. Nares of 120 pigs and 10 farmers were sampled with sterile swabs whilst 54 pork samples were collected from a retail slaughterhouse. Staphylococcus species were isolated using enrichment, cefoxitin-aztreonam selective broth and Mannitol salt agar. Isolates were tested for susceptibility to cefoxitin (30 µg), oxacillin (1 µg) and vancomycin (30 µg). Methicillin-resistant staphylococci isolates were characterised using conventional biochemical tests. From 184 samples, 364 staphylococcal isolates were obtained. Amongst the 54 pork samples, 44.0% were contaminated with Staphylococcus species. Overall, 9 (2.5%) MRS were obtained and presumptively identified as Staphylococcus xylosus (n = 3), Staphylococcus sciuri (n = 3), Staphylococcus warneri (n = 2) and Staphylococcus cohnii (n = 1). There was no relationship between the prevalence of MRS between pigs and pig handlers in the farms, but Farm 2 had the highest frequency of 66.7% (p 0.05). Piglets had the highest prevalence of 66.7% (p 0.05) whilst MRS was absent in workers and pork samples. This study raises concerns about the cross-contamination of staphylococci in the food chain. Constant surveillance is imperative to ensure food safety.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Doenças dos Suínos , Animais , Antibacterianos/farmacologia , Resistência a Meticilina , Testes de Sensibilidade Microbiana/veterinária , Nigéria , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Staphylococcus , Suínos , Doenças dos Suínos/epidemiologiaRESUMO
Biofilm formation has been shown to be critical to the success of uropathogens. Although Staphylococcus saprophyticus is a common cause of urinary tract infections, its biofilm production capacity, composition, genetic basis, and origin are poorly understood. We investigated biofilm formation in a large and diverse collection of S. saprophyticus (n = 422). Biofilm matrix composition was assessed in representative strains (n = 63) belonging to two main S. saprophyticus lineages (G and S) recovered from human infection, colonization, and food-related environment using biofilm detachment approach. To identify factors that could be associated with biofilm formation and structure variation, we used a pangenome-wide association study approach. Almost all the isolates (91%; n = 384/422) produced biofilm. Among the 63 representative strains, we identified eight biofilm matrix phenotypes, but the most common were composed of protein or protein-extracellular DNA (eDNA)-polysaccharides (38%, 24/63 each). Biofilms containing protein-eDNA-polysaccharides were linked to lineage G and environmental isolates, whereas protein-based biofilms were produced by lineage S and infection isolates (p < 0.05). Putative biofilm-associated genes, namely, aas, atl, ebpS, uafA, sasF, sasD, sdrH, splE, sdrE, sdrC, sraP, and ica genes, were found with different frequencies (3-100%), but there was no correlation between their presence and biofilm production or matrix types. Notably, icaC_1 was ubiquitous in the collection, while icaR was lineage G-associated, and only four strains carried a complete ica gene cluster (icaADBCR) except one that was without icaR. We provided evidence, using a comparative genomic approach, that the complete icaADBCR cluster was acquired multiple times by S. saprophyticus and originated from other coagulase-negative staphylococci. Overall, the composition of S. saprophyticus biofilms was distinct in environmental and clinical isolates, suggesting that modulation of biofilm structure could be a key step in the pathogenicity of these bacteria. Moreover, biofilm production in S. saprophyticus is ica-independent, and the complete icaADBCR was acquired from other staphylococci.