Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 89(2): 216-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21455272

RESUMO

Rhomboids are intramembrane serine peptidases conserved in all kingdoms of life. Their general role is to cleave integral membrane proteins to release signalling molecules. These signals, when disrupted, can contribute to various diseases. Crystal structures of H. influenzae (hiGlpG) and E. coli GlpG (ecGlpG) rhomboids have revealed a structure with six transmembrane helices and a Ser-His catalytic dyad buried within the membrane. One emerging issue was the identification of the mobile element in the protein that allows substrate docking. It has been proposed that the substrate entry gate is composed of helix 5 and loop 5. The present review studies the structures of these two orthologs. In ecGlpG structures, different conformations of loop 5 and helix 5 are observed. Open and closed conformations of ecGlpG structures are compared with each other and with hiGlpG, surveying differences in hydrophobic interactions within loop 5 and helix 5. Furthermore, a comparison of the ecGlpG and hiGlpG structures reveals differences in loop 4. Overall, less variation is observed in loop 4, suggesting this region acts as an anchor for the substrate gate. Functional and regulatory implications of these variations are discussed.


Assuntos
Proteínas de Membrana/química , Peptídeo Hidrolases/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Especificidade por Substrato
2.
Biochemistry ; 48(42): 10038-46, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19754158

RESUMO

Enhanced cyan fluorescent protein (ECFP) and its variant Cerulean are genetically encoded fluorophores widely used as donors in FRET-based cell imaging experiments. First, we have confirmed through denaturation experiments that the double-peak spectroscopic signature of these fluorescent proteins originates from the indole ring of the chromophore. Then, to explain the improvement in the fluorescence properties of Cerulean compared to those of ECFP, we have determined the high-resolution crystal structures of these two proteins at physiological pH and performed molecular dynamics simulations. In both proteins, the N-terminal half of the seventh strand exhibits two conformations. These conformations both have a complex set of van der Waals interactions with the chromophore and, as our simulations suggest, they interconvert on a nanosecond time scale. The Y145A and H148D mutations in Cerulean stabilize these interactions and allow the chromophore to be more planar, better packed, and less prone to collisional quenching, albeit only intermittently. As a consequence, the probability of nonradiative decay is significantly decreased. Our results highlight the considerable dynamical flexibility that exists in the vicinity of the tryptophan-based chromophore of these engineered fluorescent proteins and provide insights that should allow the design of mutants with enhanced optical properties.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Simulação por Computador , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triptofano/química
3.
J Mol Biol ; 425(7): 1127-42, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23353827

RESUMO

Rhomboids are membrane-embedded serine proteases that cleave membrane protein substrates. Escherichia coli rhomboid GlpG (ecGlpG) consists of an N-terminal cytoplasmic domain and a membrane domain containing the active site. We determined the crystal structure of the soluble cytoplasmic domain of ecGlpG at 1.35Å resolution and examined whether this domain affected the catalytic activity of the enzyme. The structure revealed that the ecGlpG cytoplasmic domain exists as a dimer with extensive domain swapping between the two monomers. Domain-swapped dimers can be isolated from the full-length protein, suggesting that this is a physiologically relevant structure. An extensive steady-state kinetic analysis of the full-length ecGlpG and its membrane domain using soluble and transmembrane model protein substrates resulted in an unexpected conclusion: removal of the cytoplasmic domain does not alter the catalytic parameters for detergent-solubilized rhomboid for both substrates.


Assuntos
Proteínas de Ligação a DNA/química , Endopeptidases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Membrana/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
J Mol Biol ; 407(5): 687-97, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21295583

RESUMO

Rhomboids are a remarkable class of serine proteases that are embedded in lipid membranes. These membrane-bound enzymes play key roles in cellular signaling events, and disruptions in these events can result in numerous disease pathologies, including hereditary blindness, type 2 diabetes, Parkinson's disease, and epithelial cancers. Recent crystal structures of rhomboids from Escherichia coli have focused on how membrane-bound substrates gain access to a buried active site. In E. coli, it has been shown that movements of loop 5, with smaller movements in helix 5 and loop 4, act as substrate gate, facilitating inhibitor access to rhomboid catalytic residues. Herein we present a new structure of the Haemophilus influenzae rhomboid hiGlpG, which reveals disorder in loop 5, helix 5, and loop 4, indicating that, together, they represent mobile elements of the substrate gate. Substrate cleavage assays by hiGlpG with amino acid substitutions in these mobile regions demonstrate that the flexibilities of both loop 5 and helix 5 are important for access of the substrates to the catalytic residues. Mutagenesis indicates that less mobility by loop 4 is required for substrate cleavage. A reexamination of the reaction mechanism of rhomboid substrates, whereby cleavage of the scissile bond occurs on the si-face of the peptide bond, is discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Haemophilus influenzae/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína , Proteínas de Bactérias/genética , Cristalografia por Raios X , Endopeptidases/genética , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA