Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542135

RESUMO

G-quadruplexes or G4s are non-canonical secondary structures of nucleic acids characterized by guanines arranged in stacked tetraplex arrays. Decades of research into these peculiar assemblies of DNA and RNA, fueled by the development and optimization of a vast array of techniques and assays, has resulted in a large amount of information regarding their structure, stability, localization, and biological significance in native systems. A plethora of articles have reported the roles of G-quadruplexes in multiple pathways across several species, ranging from gene expression regulation to RNA biogenesis and trafficking, DNA replication, and genome maintenance. Crucially, a large amount of experimental evidence has highlighted the roles of G-quadruplexes in cancer biology and other pathologies, pointing at these structurally unique guanine assemblies as amenable drug targets. Given the rapid expansion of this field of research, this review aims at summarizing all the relevant aspects of G-quadruplex biology by combining and discussing results from seminal works as well as more recent and cutting-edge experimental evidence. Additionally, the most common methodologies used to study G4s are presented to aid the reader in critically interpreting and integrating experimental data.


Assuntos
Quadruplex G , DNA/genética , DNA/química , RNA/genética , RNA/química , Regulação da Expressão Gênica , Replicação do DNA
2.
Nucleic Acids Res ; 49(22): 12785-12804, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34871443

RESUMO

Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.


Assuntos
Quadruplex G , Instabilidade Genômica , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Aberrações Cromossômicas , Dano ao DNA , Genoma Fúngico , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homeostase do Telômero
3.
Mol Cell ; 50(3): 323-32, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23603115

RESUMO

To improve replication fidelity, mismatch repair (MMR) must detect non-Watson-Crick base pairs and direct their repair to the nascent DNA strand. Eukaryotic MMR in vitro requires pre-existing strand discontinuities for initiation; consequently, it has been postulated that MMR in vivo initiates at Okazaki fragment termini in the lagging strand and at nicks generated in the leading strand by the mismatch-activated MLH1/PMS2 endonuclease. We now show that a single ribonucleotide in the vicinity of a mismatch can act as an initiation site for MMR in human cell extracts and that MMR activation in this system is dependent on RNase H2. As loss of RNase H2 in S.cerevisiae results in a mild MMR defect that is reflected in increased mutagenesis, MMR in vivo might also initiate at RNase H2-generated nicks. We therefore propose that ribonucleotides misincoporated during DNA replication serve as physiological markers of the nascent DNA strand.


Assuntos
Pareamento Incorreto de Bases , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Replicação do DNA/genética , DNA/genética , Ribonucleotídeos/genética , Animais , Sistema Livre de Células , Células Cultivadas , DNA/metabolismo , Células HEK293 , Humanos , Camundongos , Mutagênese/genética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Nucleic Acids Res ; 47(9): 4612-4623, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30847483

RESUMO

RNA:DNA hybrids are transient physiological intermediates that arise during several cellular processes such as DNA replication. In pathological situations, they may stably accumulate and pose a threat to genome integrity. Cellular RNase H activities process these structures to restore the correct DNA:DNA sequence. Yeast cells lacking RNase H are negatively affected by depletion of deoxyribonucleotide pools necessary for DNA replication. Here we show that the translesion synthesis DNA polymerase η (Pol η) plays a role in DNA replication under low deoxyribonucleotides condition triggered by hydroxyurea. In particular, the catalytic reaction performed by Pol η is detrimental for RNase H deficient cells, causing DNA damage checkpoint activation and G2/M arrest. Moreover, a Pol η mutant allele with enhanced ribonucleotide incorporation further exacerbates the sensitivity to hydroxyurea of cells lacking RNase H activities. Our data are compatible with a model in which Pol η activity facilitates the formation or stabilization of RNA:DNA hybrids at stalled replication forks. However, in a scenario where RNase H activity fails to restore DNA, these hybrids become highly toxic for cells.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Ribonuclease H/genética , Saccharomyces cerevisiae/genética , Apoptose , Dano ao DNA/genética , Reparo do DNA/genética , Desoxirribonucleotídeos/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos
5.
Plant Cell ; 29(11): 2801-2816, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29042404

RESUMO

Plants measure day or night lengths to coordinate specific developmental changes with a favorable season. In rice (Oryza sativa), the reproductive phase is initiated by exposure to short days when expression of HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1) is induced in leaves. The cognate proteins are components of the florigenic signal and move systemically through the phloem to reach the shoot apical meristem (SAM). In the SAM, they form a transcriptional activation complex with the bZIP transcription factor OsFD1 to start panicle development. Here, we show that Hd3a and RFT1 can form transcriptional activation or repression complexes also in leaves and feed back to regulate their own transcription. Activation complexes depend on OsFD1 to promote flowering. However, additional bZIPs, including Hd3a BINDING REPRESSOR FACTOR1 (HBF1) and HBF2, form repressor complexes that reduce Hd3a and RFT1 expression to delay flowering. We propose that Hd3a and RFT1 are also active locally in leaves to fine-tune photoperiodic flowering responses.


Assuntos
Florígeno/metabolismo , Flores/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Meristema/genética , Meristema/crescimento & desenvolvimento , Oryza/genética , Oryza/crescimento & desenvolvimento , Fotoperíodo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética
6.
Mol Cell ; 45(1): 99-110, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22244334

RESUMO

The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome.


Assuntos
Reparo do DNA , DNA/química , Ribonuclease H/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Replicação do DNA , Instabilidade Genômica , Antígeno Nuclear de Célula em Proliferação , Saccharomyces cerevisiae/genética , Estresse Fisiológico , Ubiquitinação
7.
Int J Mol Sci ; 21(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131532

RESUMO

In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.


Assuntos
DNA/química , Instabilidade Genômica , Ácidos Nucleicos Heteroduplexes/química , Ribonucleotídeos/química , Animais , DNA/genética , Replicação do DNA , Humanos , Ácidos Nucleicos Heteroduplexes/genética , Estruturas R-Loop , Ribonucleotídeos/genética
8.
Mol Cell ; 40(1): 50-62, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932474

RESUMO

Ultraviolet (UV) light induces DNA-damage checkpoints and mutagenesis, which are involved in cancer protection and tumorigenesis, respectively. How cells identify DNA lesions and convert them to checkpoint-activating structures is a major question. We show that during repair of UV lesions in noncycling cells, Exo1-mediated processing of nucleotide excision repair (NER) intermediates competes with repair DNA synthesis. Impediments of the refilling reaction allow Exo1 to generate extended ssDNA gaps, detectable by electron microscopy, which drive Mec1 kinase activation and will be refilled by long-patch repair synthesis, as shown by DNA combing. We provide evidence that this mechanism may be stimulated by closely opposing UV lesions, represents a strategy to redirect problematic repair intermediates to alternative repair pathways, and may also be extended to physically different DNA damages. Our work has significant implications for understanding the coordination between repair of DNA lesions and checkpoint pathways to preserve genome stability.


Assuntos
Ciclo Celular , Cromossomos Fúngicos , Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/enzimologia , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Cromossomos Fúngicos/efeitos da radiação , Cromossomos Fúngicos/ultraestrutura , Reparo do DNA/efeitos da radiação , DNA Fúngico/efeitos da radiação , DNA Fúngico/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Relação Dose-Resposta à Radiação , Ativação Enzimática , Exodesoxirribonucleases/genética , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Raios Ultravioleta
9.
PLoS Genet ; 11(1): e1004928, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569305

RESUMO

The Mre11-Rad50-Xrs2 nuclease complex, together with Sae2, initiates the 5'-to-3' resection of Double-Strand DNA Breaks (DSBs). Extended 3' single stranded DNA filaments can be exposed from a DSB through the redundant activities of the Exo1 nuclease and the Dna2 nuclease with the Sgs1 helicase. In the absence of Sae2, Mre11 binding to a DSB is prolonged, the two DNA ends cannot be kept tethered, and the DSB is not efficiently repaired. Here we show that deletion of the yeast 53BP1-ortholog RAD9 reduces Mre11 binding to a DSB, leading to Rad52 recruitment and efficient DSB end-tethering, through an Sgs1-dependent mechanism. As a consequence, deletion of RAD9 restores DSB repair either in absence of Sae2 or in presence of a nuclease defective MRX complex. We propose that, in cells lacking Sae2, Rad9/53BP1 contributes to keep Mre11 bound to a persistent DSB, protecting it from extensive DNA end resection, which may lead to potentially deleterious DNA deletions and genome rearrangements.


Assuntos
Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Recombinação Homóloga/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Biophys J ; 113(7): 1373-1382, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978432

RESUMO

Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition.


Assuntos
DNA/metabolismo , Conformação de Ácido Nucleico , Ribonucleotídeos/metabolismo , DNA/química , Escherichia coli , Modelos Lineares , Microscopia de Força Atômica , Mutação , Reação em Cadeia da Polimerase , Ribonucleotídeos/química , Taq Polimerase/genética , Taq Polimerase/metabolismo
11.
Hum Mol Genet ; 24(3): 649-58, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274781

RESUMO

Aicardi-Goutières syndrome (AGS) is an inflammatory encephalopathy caused by defective nucleic acids metabolism. Over 50% of AGS mutations affect RNase H2 the only enzyme able to remove single ribonucleotide-monophosphates (rNMPs) embedded in DNA. Ribonucleotide triphosphates (rNTPs) are incorporated into genomic DNA with relatively high frequency during normal replication making DNA more susceptible to strand breakage and mutations. Here we demonstrate that human cells depleted of RNase H2 show impaired cell cycle progression associated with chronic activation of post-replication repair (PRR) and genome instability. We identify a similar phenotype in cells derived from AGS patients, which indeed accumulate rNMPs in genomic DNA and exhibit markers of constitutive PRR and checkpoint activation. Our data indicate that in human cells RNase H2 plays a crucial role in correcting rNMPs misincorporation, preventing DNA damage. Such protective function is compromised in AGS patients and may be linked to unscheduled immune responses. These findings may be relevant to shed further light on the mechanisms involved in AGS pathogenesis.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Dano ao DNA , DNA/química , Instabilidade Genômica , Malformações do Sistema Nervoso/genética , Ribonuclease H/metabolismo , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/patologia , Linhagem Celular , Proliferação de Células , DNA/genética , Reparo do DNA , Replicação do DNA , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Ribonuclease H/genética , Ribonucleotídeos/metabolismo
12.
Nucleic Acids Res ; 43(10): 5182-93, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25925570

RESUMO

Multiple myeloma, the second most frequent hematologic tumor after lymphomas, is an incurable cancer. Recent sequencing efforts have identified the ribonuclease DIS3 as one of the most frequently mutated genes in this disease. DIS3 represents the catalytic subunit of the exosome, a macromolecular complex central to the processing, maturation and surveillance of various RNAs. miRNAs are an evolutionarily conserved class of small noncoding RNAs, regulating gene expression at post-transcriptional level. Ribonucleases, including Drosha, Dicer and XRN2, are involved in the processing and stability of miRNAs. However, the role of DIS3 on the regulation of miRNAs remains largely unknown. Here we found that DIS3 regulates the levels of the tumor suppressor let-7 miRNAs without affecting other miRNA families. DIS3 facilitates the maturation of let-7 miRNAs by reducing in the cytoplasm the RNA stability of the pluripotency factor LIN28B, a inhibitor of let-7 processing. DIS3 inactivation, through the increase of LIN28B and the reduction of mature let-7, enhances the translation of let-7 targets such as MYC and RAS leading to enhanced tumorigenesis. Our study establishes that the ribonuclease DIS3, targeting LIN28B, sustains the maturation of let-7 miRNAs and suggests the increased translation of critical oncogenes as one of the biological outcomes of DIS3 inactivation.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
13.
Commun Biol ; 7(1): 491, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654143

RESUMO

Ribonucleotides represent the most common non-canonical nucleotides found in eukaryotic genomes. The sources of chromosome-embedded ribonucleotides and the mechanisms by which unrepaired rNMPs trigger genome instability and human pathologies are not fully understood. The available sequencing technologies only allow to indirectly deduce the genomic location of rNMPs. Oxford Nanopore Technologies (ONT) may overcome such limitation, revealing the sites of rNMPs incorporation in genomic DNA directly from raw sequencing signals. We synthesized two types of DNA molecules containing rNMPs at known or random positions and we developed data analysis pipelines for DNA-embedded ribonucleotides detection by ONT. We report that ONT can identify all four ribonucleotides incorporated in DNA by capturing rNMPs-specific alterations in nucleotide alignment features, current intensity, and dwell time. We propose that ONT may be successfully employed to directly map rNMPs in genomic DNA and we suggest a strategy to build an ad hoc basecaller to analyse native genomes.


Assuntos
DNA , Sequenciamento por Nanoporos , Ribonucleotídeos , Sequenciamento por Nanoporos/métodos , Ribonucleotídeos/genética , DNA/genética , Humanos , Análise de Sequência de DNA/métodos , Nanoporos
14.
PLoS Genet ; 6(1): e1000763, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20098491

RESUMO

Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão do Núcleo Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Quebras de DNA de Cadeia Dupla , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dados de Sequência Molecular , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS Genet ; 6(8)2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700441

RESUMO

Saccharomyces cerevisiae Rad9 is required for an effective DNA damage response throughout the cell cycle. Assembly of Rad9 on chromatin after DNA damage is promoted by histone modifications that create docking sites for Rad9 recruitment, allowing checkpoint activation. Rad53 phosphorylation is also dependent upon BRCT-directed Rad9 oligomerization; however, the crosstalk between these molecular determinants and their functional significance are poorly understood. Here we report that, in the G1 and M phases of the cell cycle, both constitutive and DNA damage-dependent Rad9 chromatin association require its BRCT domains. In G1 cells, GST or FKBP dimerization motifs can substitute to the BRCT domains for Rad9 chromatin binding and checkpoint function. Conversely, forced Rad9 dimerization in M phase fails to promote its recruitment onto DNA, although it supports Rad9 checkpoint function. In fact, a parallel pathway, independent on histone modifications and governed by CDK1 activity, allows checkpoint activation in the absence of Rad9 chromatin binding. CDK1-dependent phosphorylation of Rad9 on Ser11 leads to specific interaction with Dpb11, allowing Rad53 activation and bypassing the requirement for the histone branch.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cromatina/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/genética , Dano ao DNA , Dimerização , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
16.
PLoS One ; 18(12): e0295665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096210

RESUMO

Mosquito control is of paramount importance, in particular, in light of the major environmental alterations associated with human activities, from climate change to the altered distribution of pathogens, including those transmitted by Arthropods. Here, we used the common house mosquito, Culex pipiens to test the efficacy of MosChito raft, a novel tool for mosquito larval control. MosChito raft is a floating hydrogel matrix, composed of chitosan, genipin and yeast cells, as bio-attractants, developed for the delivery of a Bacillus thuringiensis israeliensis (Bti)-based bioinsecticide to mosquito larvae. To this aim, larvae of Cx. pipiens were collected in field in Northern Italy and a novel colony of mosquito species (hereafter: Trescore strain) was established. MosChito rafts, containing the Bti-based formulation, were tested on Cx. pipiens larvae from the Trescore strain to determine the doses to be used in successive experiments. Thus, bioassays with MosChito rafts were carried out under semi-field conditions, both on larvae from the Trescore strain and on pools of larvae collected from the field, at different developmental stages. Our results showed that MosChito raft is effective against Cx. pipiens. In particular, the observed mortality was over 50% after two days exposure of the larvae to MosChito rafts, and over 70-80% at days three to four, in both laboratory and wild larvae. In conclusion, our results point to the MosChito raft as a promising tool for the eco-friendly control of a mosquito species that is not only a nuisance insect but is also an important vector of diseases affecting humans and animals.


Assuntos
Bacillus thuringiensis , Culex , Animais , Humanos , Larva , Controle de Mosquitos/métodos , Saccharomyces cerevisiae , Microdomínios da Membrana , Mosquitos Vetores
17.
EMBO J ; 27(10): 1502-12, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18418382

RESUMO

Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Proteínas de Ciclo Celular/genética , Ativação Enzimática , Deleção de Genes , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
DNA Repair (Amst) ; 93: 102929, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087266

RESUMO

Exonuclease 1 (EXO1) is an evolutionarily well conserved exonuclease. Its ability to resect DNA in the 5'-3' direction has been extensively characterized and shown to be implicated in several genomic DNA metabolic processes such as replication stress response, double strand break repair, mismatch repair, nucleotide excision repair and telomere maintenance. While the processing of DNA is critical for its repair, an excessive nucleolytic activity can lead to secondary lesions, increased genome instability and alterations in cellular functions. It is thus clear that different regulatory layers must be in effect to keep DNA degradation under control. Regulatory events that modulate EXO1 activity have been reported to act at different levels. Here we summarize the different post-translational modifications (PTMs) that affect EXO1 and discuss the implications of PTMs for EXO1 activities and how this regulation may be associated to cancer development.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Processamento de Proteína Pós-Traducional , Animais , DNA/metabolismo , Humanos
19.
Cell Rep ; 31(5): 107603, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375052

RESUMO

An important but still enigmatic function of DNA:RNA hybrids is their role in DNA double-strand break (DSB) repair. Here, we show that Sen1, the budding yeast ortholog of the human helicase Senataxin, is recruited at an HO endonuclease-induced DSB and limits the local accumulation of DNA:RNA hybrids. In the absence of Sen1, hybrid accumulation proximal to the DSB promotes increased binding of the Ku70-80 (KU) complex at the break site, mutagenic non-homologous end joining (NHEJ), micro-homology-mediated end joining (MMEJ), and chromosome translocations. We also show that homology-directed recombination (HDR) by gene conversion is mostly proficient in sen1 mutants after single DSB. However, in the absence of Sen1, DNA:RNA hybrids, Mre11, and Dna2 initiate resection through a non-canonical mechanism. We propose that this resection mechanism through local DNA:RNA hybrids acts as a backup to prime HDR when canonical pathways are altered, but at the expense of genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , Reparo do DNA/fisiologia , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/fisiologia , Humanos , Proteínas Nucleares/metabolismo
20.
Methods Mol Biol ; 1672: 557-573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043648

RESUMO

We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.


Assuntos
DNA/química , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Silicatos de Alumínio , Processamento de Imagem Assistida por Computador , Microscopia de Força Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA