Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(3): e111065, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484366

RESUMO

Phospholipid extrusion by ABC subfamily A (ABCA) exporters is central to cellular physiology, although the specifics of the underlying substrate interactions and transport mechanisms remain poorly resolved at the molecular level. Here we report cryo-EM structures of lipid-embedded human ABCA7 in an open state and in a nucleotide-bound, closed state at resolutions between 3.6 and 4.0 Å. The former reveals an ordered patch of bilayer lipids traversing the transmembrane domain (TMD), while the latter reveals a lipid-free, closed TMD with a small extracellular opening. These structures offer a structural framework for both substrate entry and exit from the ABCA7 TMD and highlight conserved rigid-body motions that underlie the associated conformational transitions. Combined with functional analysis and molecular dynamics (MD) simulations, our data also shed light on lipid partitioning into the ABCA7 TMD and localized membrane perturbations that underlie ABCA7 function and have broader implications for other ABCA family transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Simulação de Dinâmica Molecular , Humanos , Transportadores de Cassetes de Ligação de ATP/química , Transporte Biológico , Microscopia Crioeletrônica , Fosfolipídeos
2.
Proc Natl Acad Sci U S A ; 111(1): E54-61, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367089

RESUMO

APIP, Apaf-1 interacting protein, has been known to inhibit two main types of programmed cell death, apoptosis and pyroptosis, and was recently found to be associated with cancers and inflammatory diseases. Distinct from its inhibitory role in cell death, APIP was also shown to act as a 5-methylthioribulose-1-phosphate dehydratase, or MtnB, in the methionine salvage pathway. Here we report the structural and enzymatic characterization of human APIP as an MtnB enzyme with a Km of 9.32 µM and a Vmax of 1.39 µmol min(-1) mg(-1). The crystal structure was determined at 2.0-Å resolution, revealing an overall fold similar to members of the zinc-dependent class II aldolase family. APIP/MtnB exists as a tetramer in solution and exhibits an assembly with C4 symmetry in the crystal lattice. The pocket-shaped active site is located at the end of a long cleft between two adjacent subunits. We propose an enzymatic reaction mechanism involving Glu139* as a catalytic acid/base, as supported by enzymatic assay, substrate-docking study, and sequence conservation analysis. We explored the relationship between two distinct functions of APIP/MtnB, cell death inhibition, and methionine salvage, by measuring the ability of enzymatic mutants to inhibit cell death, and determined that APIP/MtnB functions as a cell death inhibitor independently of its MtnB enzyme activity for apoptosis induced by either hypoxia or etoposide, but dependently for caspase-1-induced pyroptosis. Our results establish the structural and biochemical groundwork for future mechanistic studies of the role of APIP/MtnB in modulating cell death and inflammation and in the development of related diseases.


Assuntos
Proteínas Reguladoras de Apoptose/química , Apoptose , Morte Celular , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/metabolismo , Bacillus subtilis/metabolismo , Caspase 1/metabolismo , Caspase 9/metabolismo , Domínio Catalítico , Células HeLa , Humanos , Inflamação/metabolismo , Metionina/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Neoplasias/metabolismo , Homologia de Sequência de Aminoácidos
3.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873235

RESUMO

Telomeres protect chromosome ends and determine the replication potential of dividing cells. The canonical telomere sequence TTAGGG is synthesized by telomerase holoenzyme, which maintains telomere length in proliferative stem cells. Although the core components of telomerase are well-defined, mechanisms of telomerase regulation are still under investigation. We report a novel role for the Src family kinase Fyn, which disrupts telomere maintenance in stem cells by phosphorylating the scaffold protein Menin. We found that Fyn knockdown prevented telomere erosion in human and mouse stem cells, validating the results with four telomere measurement techniques. We show that Fyn phosphorylates Menin at tyrosine 603 (Y603), which increases Menin's SUMO1 modification, C-terminal stability, and importantly, its association with the telomerase RNA component (TR). Using mass spectrometry, immunoprecipitation, and immunofluorescence experiments we found that SUMO1-Menin decreases TR's association with telomerase subunit Dyskerin, suggesting that Fyn's phosphorylation of Menin induces telomerase subunit mislocalization and may compromise telomerase function at telomeres. Importantly, we find that Fyn inhibition reduces accelerated telomere shortening in human iPSCs harboring mutations for dyskeratosis congenita.

4.
Commun Biol ; 5(1): 7, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013584

RESUMO

The peroxisomal very long chain fatty acid (VLCFA) transporter ABCD1 is central to fatty acid catabolism and lipid biosynthesis. Its dysfunction underlies toxic cytosolic accumulation of VLCFAs, progressive demyelination, and neurological impairments including X-linked adrenoleukodystrophy (X-ALD). We present cryo-EM structures of ABCD1 in phospholipid nanodiscs in a nucleotide bound conformation open to the peroxisomal lumen and an inward facing conformation open to the cytosol at up to 3.5 Å resolution, revealing details of its transmembrane cavity and ATP dependent conformational spectrum. We identify features distinguishing ABCD1 from its closest homologs and show that coenzyme A (CoA) esters of VLCFAs modulate ABCD1 activity in a species dependent manner. Our data suggest a transport mechanism where the CoA moieties of VLCFA-CoAs enter the hydrophilic transmembrane domain while the acyl chains extend out into the surrounding membrane bilayer. The structures help rationalize disease causing mutations and may aid ABCD1 targeted structure-based drug design.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Fosfolipídeos/metabolismo , Microscopia Crioeletrônica , Humanos , Peroxissomos/metabolismo
5.
Bio Protoc ; 11(24): e4271, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087930

RESUMO

Various methods have been developed to generate phosphoglyceride liposomes. Approaches resulting in homogeneous populations of unilamellar bilayer vesicles are generally preferred to mimic various cell membrane situations, as well as to optimize aqueous solute trapping efficiency using the least amount of lipid for biotechnological purposes. Most are time-consuming, often tedious, or require specialized equipment, and produce vesicles with limited shelf-life at room temperature or in cold storage. Herein, we describe a straightforward approach that avoids the preceding complications and streamlines the construction of unilamellar bilayer vesicles from 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC)/dihexanoyl phosphatidylcholine (DHPC) bicelle mixtures at room temperature. The resulting vesicles are small (32-36 nm diameter), unilamellar, bilayer vesicles that are homogeneous, stable, and resistant to freeze-thaw alterations. Graphic abstract: Cryo-EM of POPC vesicles formed by dilution of 0.5 q-value POPC/DHPC bicelle mix.

6.
Oncotarget ; 11(20): 1846-1861, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32499870

RESUMO

The Timeless (TIM) and it's interacting partner TIPIN protein complex is well known for its role in replication checkpoints and normal DNA replication processes. Recent studies revealed the involvement of TIM and TIPIN in human malignancies; however, no evidence is available regarding the expression of the TIM/TIPIN protein complex or its potential role in melanoma. Therefore, we investigated the role of this complex in melanoma. To assess the role of the TIM/TIPIN complex in melanoma, we analyzed TIM/TIPIN expression data from the publicly accessible TCGA online database, Western blot analysis, and RT-qPCR in a panel of melanoma cell lines. Lentivirus-mediated TIM/TIPIN knockdown in A375 melanoma cells was used to examine proliferation, colony formation, and apoptosis. A xenograft tumor formation assay was also performed. The TIM/TIPIN complex is frequently overexpressed in melanoma cells compared to normal melanocytes. We also discovered that the overexpression of TIM and TIPIN was significantly associated with poorer prognosis of melanoma patients. Furthermore, we observed that shRNA-mediated knockdown of TIM and TIPIN reduced cell viability and proliferation due to the induction of apoptosis and increased levels of γH2AX, a marker of DNA damage. In a xenograft tumor nude mouse model, shRNA-knockdown of TIM/TIPIN significantly reduced tumor growth. Our results suggest that the TIM/TIPIN complex plays an important role in tumorigenesis of melanoma, which might reveal novel approaches for the development of new melanoma therapies. Our studies also provide a beginning structural basis for understanding the assembly of the TIM/TIPIN complex. Further mechanistic investigations are needed to determine the complex's potential as a biomarker of melanoma susceptibility. Targeting TIM/TIPIN might be a potential therapeutic strategy against melanoma.

7.
PLoS One ; 11(9): e0163394, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27684549

RESUMO

The hexameric ATPase p97 has been implicated in diverse cellular processes through interactions with many different adaptor proteins at its N-terminal domain. Among these, the Ufd1-Npl4 heterodimer is a major adaptor, and the p97-Ufd1-Npl4 complex plays an essential role in endoplasmic reticulum-associated degradation (ERAD), acting as a segregase that translocates the ubiquitinated client protein from the ER membrane into the cytosol for proteasomal degradation. We determined the crystal structure of the complex of the N-terminal domain of p97 and the SHP box of Ufd1 at a resolution of 1.55 Å. The 11-residue-long SHP box of Ufd1 binds at the far-most side of the Nc lobe of the p97 N domain primarily through hydrophobic interactions, such that F225, F228, N233 and L235 of the SHP box contact hydrophobic residues on the surface of the p97 Nc lobe. Mutating these key interface residues abolished the interactions in two different binding experiments, isothermal titration calorimetry and co-immunoprecipitation. Furthermore, cycloheximide chase assays showed that these same mutations caused accumulation of tyrosinase-C89R, a well-known ERAD substrate, thus implying decreased rate of protein degradation due to their defects in ERAD function. Together, these results provide structural and biochemical insights into the interaction between p97 N domain and Ufd1 SHP box.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA