Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Skin Res Technol ; 30(7): eSRT13784, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031931

RESUMO

BACKGROUND: Microneedles are tiny needles, typically ranging from tens to hundreds of micrometers in length, used in various medical procedures and treatments. The tested medical device named "CELLADEEP Patch" a dissolvable microneedle therapy system (MTS), made of hyaluronic acid and collagen. And the iontophoresis technique is also applied in the system. The study aimed to evaluate the effectiveness of the "CELLADEEP Patch" in skin improvement. METHODS: Ex vivo human-derived skin tissue models were used in this study and they were divided into three different groups, namely, the Untreated Group, the Negative Control Group, and the Test Group respectively. The Untreated Group received no treatment measures, the Negative Control Group was exposed to ultraviolet B radiation (UVB) irradiation, and the Test Group was exposed to UVB irradiation and treated with "CELLADEEP Patch". Skin moisture content, transdermal water loss, and skin elasticity were evaluated by three clinical devices. Additionally, histological staining and related mRNA expression levels were also analyzed. RESULTS: The results of skin moisture content, transdermal water loss, and skin elasticity evaluation consistently illustrated that the application of "CELLADEEP Patch" led to remarkable skin improvement. And the analysis of histological staining images also confirmed the effectiveness of the "CELLADEEP Patch", especially for increasing collagen density. Moreover, the upregulation of Collagen type 1 a (COL1A1) and hyaluronan synthase 3 mRNA expression and the decrease of Matrix metalloproteinase 1 (MMP-1) and Interleukin-1 beta (IL-1ß) mRNA expression reflected its wrinkle improvement, moisturizing and anti-inflammation function. CONCLUSION: "CELLADEPP Patch", the MTS combined with the iontophoresis technique, exhibits its effectiveness in moisturizing, skin elasticity improvement, and anti-inflammatory function when applied to ex vivo human-derived skin tissue models in experiments. The study has contributed to the understanding of the "CELLADEPP Patch" and laid the foundation for subsequent animal experiments and clinical trials.


Assuntos
Ácido Hialurônico , Iontoforese , Agulhas , Pele , Humanos , Ácido Hialurônico/administração & dosagem , Iontoforese/métodos , Iontoforese/instrumentação , Pele/efeitos da radiação , Colágeno , Elasticidade , Metaloproteinase 1 da Matriz/metabolismo , Interleucina-1beta/metabolismo , Raios Ultravioleta , Envelhecimento da Pele/efeitos da radiação , Perda Insensível de Água/efeitos da radiação , Adesivo Transdérmico , Colágeno Tipo I/metabolismo
2.
Skin Res Technol ; 30(4): e13682, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616504

RESUMO

BACKGROUND: Natural products are often friendly and can be used on children's skin after systematic and careful research. Therefore, in this study, the Royal Oji Complex (ROC), a product with natural ingredients, was used to study their effectiveness on keratinocytes taken from the skin of children from 0 to 3 years old. METHOD: Normal human epidermal keratinocytes and tissue-isolated keratinocytes (TIKC) from young donors were treated with three different concentrations of ROC: 0.1, 1, and 10 ppm. The mRNA expression of the epidermal barrier's essential genes, such as hyaluronic acid synthase 3 (Has3), involucrin (IVL), loricrin (LOR), and claudin-1 (CLD1) was investigated using qRT-PCR. Ceramide content was measured by ELISA, with retinoic acid (R.A.) and amarogentin (AMA) serving as positive controls. RESULTS: ROC significantly elevated HAS3 gene expression in HEKn cells, especially at 10 ppm, indicating potential advantages for skin hydration in young infants. IVL increased at first but decreased as ROC concentrations increased. LOR was upregulated at lower ROC concentrations but reduced at higher doses. CLD1 gene expression increased considerably in HEKn but reduced with increasing ROC doses. Ceramide concentration increased somewhat but not significantly at 10 ppm. CONCLUSION: ROC shows potential in altering keratinocyte gene expression, with unique responses in HEKn and TIKC from young donors. While changes in ceramide content were insignificant, these results help to comprehend ROC's multiple effects on young children's skin.


Assuntos
Queratinócitos , Pele , Criança , Lactente , Humanos , Pré-Escolar , Recém-Nascido , Epiderme , Ceramidas , Doadores de Tecidos
3.
Skin Res Technol ; 30(7): e13780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031929

RESUMO

In this study, scalp tissues from Korean adults between 20 and 80 without skin disease were used. Scalp tissues were processed, and hair follicles were isolated and cultured with different treatments (including Bioscalp, Ultra Exo Booster, and Ultra S Line Plus) from Ultra V company. Over 12 days, observations and measurements of hair follicle characteristics were recorded at intervals (Days 0, 3, 6, 9, and 12). The study assessed the impact of these substances on hair follicle growth and morphology. Bioscalp, combined with Ultra Exo Booster and Ultra S Line Plus, showed significant hair elongation in ex vivo. Preservation of hair bulb diameter was observed, indicating potential for sustained hair growth by exosome-based products. The hair growth cycle analysis suggested a lower transition to the catagen stage in test products from Ultra V compared to non-treated groups. The research findings indicated that the tested formulations, especially the combination of Bioscalp, Ultra Exo Booster, and Ultra S Line Plus, demonstrated significant effectiveness in promoting hair growth, maintaining the integrity of the hair bulb, and reducing the transition to the catagen stage. The study suggests promising alternative treatments for hair loss, illustrating results that were as good as those of the conventional testing product groups.


Assuntos
Folículo Piloso , Cabelo , Mesoterapia , Couro Cabeludo , Humanos , Adulto , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Pessoa de Meia-Idade , Couro Cabeludo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Idoso , Mesoterapia/métodos , Feminino , Adulto Jovem , Masculino , Idoso de 80 Anos ou mais
4.
Korean J Parasitol ; 60(6): 401-407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36588416

RESUMO

Antimalarial drugs play an important role in the control and treatment of malaria, a deadly disease caused by the protozoan parasite Plasmodium spp. The development of novel antimalarial agents effective against drug-resistant malarial parasites is urgently needed. The novel derivatives, SKM13-MeO and SKM13-F, were designed based on an SKM13 template by replacing the phenyl group with electron-donating (-OMe) or electron-withdrawing groups (-F), respectively, to reverse the electron density. A colorimetric assay was used to quantify cytotoxicity, and in vitro inhibition assays were performed on 3 different blood stages (ring, trophozoite, and schizonts) of P. falciparum 3D7 and the ring/mixed stage of D6 strain after synchronization. The in vitro cytotoxicity analysis showed that 2 new SKM13 derivatives reduced the cytotoxicity of the SKM13 template. SKM13 maintained the IC50 at the ring and trophozoite stages but not at the schizont stage. The IC50 values for both the trophozoite stage of P. falciparum 3D7 and ring/mixed stages of D6 demonstrated that 2 SKM13 derivatives had decreased antimalarial efficacy, particularly for the SKM13-F derivative. SKM13 may be comparably effective in ring and trophozoite, and electron-donating groups (-OMe) may be better maintain the antimalarial activity than electron-withdrawing groups (-F) in SKM13 modification.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Trofozoítos
5.
Tissue Eng Part A ; 30(15-16): 447-459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38205627

RESUMO

Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO2)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The in vivo experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO2 has been successfully used in tissue engineering.


Assuntos
Dióxido de Carbono , Medicina Regenerativa , Animais , Dióxido de Carbono/química , Medicina Regenerativa/métodos , Suínos , Ratos , Engenharia Tecidual/métodos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Alicerces Teciduais/química , Ratos Sprague-Dawley , Glicosaminoglicanos/metabolismo , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Tecido Nervoso , DNA/metabolismo , Nervo Isquiático/efeitos dos fármacos
6.
Front Bioeng Biotechnol ; 12: 1407797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978716

RESUMO

Human skin-derived ECM aids cell functions but can trigger immune reactions; therefore it is addressed through decellularization. Acellular dermal matrices (ADMs), known for their regenerative properties, are used in tissue and organ regeneration. ADMs now play a key role in plastic and reconstructive surgery, enhancing aesthetics and reducing capsular contracture risk. Innovative decellularization with supercritical carbon dioxide preserves ECM quality for clinical use. The study investigated the cytotoxicity, biocompatibility, and anti-inflammatory properties of supercritical CO2 acellular dermal matrix (scADM) in vivo based on Sprague Dawley rat models. Initial experiments in vitro with fibroblast cells confirmed the non-toxic nature of scADM and demonstrated cell infiltration into scADMs after incubation. Subsequent tests in vitro revealed the ability of scADM to suppress inflammation induced by lipopolysaccharides (LPS) presenting by the reduction of pro-inflammatory cytokines TNF-α, IL-6, IL-1ß, and MCP-1. In the in vivo model, histological assessment of implanted scADMs in 6 months revealed a decrease in inflammatory cells, confirmed further by the biomarkers of inflammation in immunofluorescence staining. Besides, an increase in fibroblast infiltration and collagen formation was observed in histological staining, which was supported by various biomarkers of fibroblasts. Moreover, the study demonstrated vascularization and macrophage polarization, depicting increased endothelial cell formation. Alteration of matrix metalloproteinases (MMPs) was analyzed by RT-PCR, indicating the reduction of MMP2, MMP3, and MMP9 levels over time. Simultaneously, an increase in collagen deposition of collagen I and collagen III was observed, verified in immunofluorescent staining, RT-PCR, and western blotting. Overall, the findings suggested that scADMs offer significant benefits in improving outcomes in implant-based procedures as well as soft tissue substitution.

7.
In Vivo ; 37(5): 2078-2091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37652485

RESUMO

BACKGROUND/AIM: As the largest organ of the human body, the skin serves as a critical barrier against environmental damage. However, many factors, such as genetics, sun exposure, and lifestyle choices can lead to skin damage creating wrinkles, sagging, and loss of elasticity. The use of skincare products containing natural ingredients has become increasingly popular as a way to combat the signs of aging. Caviar oil is one such ingredient that has gained attention due to its rich composition of fatty acids, vitamins, and minerals. The objective of this study was to investigate the potential anti-aging effects of caviar oil and to develop a product, Cavi Balm, which could potentially reduce wrinkles and skin sagging. MATERIALS AND METHODS: An in vitro model using the 3T3-L1 cell line was employed to assess the effect of caviar oil on adipocyte differentiation. An ex vivo study using human skin tissue was conducted to investigate the impact of caviar oil on collagen and elastin formation and the expression of matrix metalloproteinase-1,2,9 (MMP-1, MMP-2, MMP-9). Furthermore, 102 participants were enrolled in five clinical studies to evaluate the anti-aging efficacy of our product, "Cavi Balm", in facial and neck wrinkles, facial and eye area lifting, and various skin parameters, such as skin moisture, skin elasticity, skin density, skin tightening relief, skin clarity, and skin turnover. RESULTS: In vitro, caviar oil enhanced adipocyte differentiation, and increased lipid accumulation inside the cells. The ex vivo analysis revealed that caviar oil reduced the expression levels of MMP-1, MMP-2, and MMP-9, and increased the formation of elastin and collagen I, III. Moreover, in the clinical study, Cavi Balm improved skin parameters after one-time use, with more significant effects observed after four weeks of usage. CONCLUSION: Caviar oil has a substantial impact on mitigating skin aging and holds potential for application in anti-aging products.


Assuntos
Elastina , Metaloproteinase 1 da Matriz , Humanos , Animais , Cobaias , Metaloproteinase 1 da Matriz/genética , Elastina/metabolismo , Elastina/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz , Pele , Colágeno/metabolismo , Envelhecimento
8.
In Vivo ; 37(3): 1052-1064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37103063

RESUMO

BACKGROUND/AIM: Chitosan-based functional materials have attracted considerable attention worldwide for applications in wound healing, especially in skin wound healing, due to their efficiency in hemostasis, anti-bacterial, and skin regeneration. Various chitosan-based products have been developed for skin wound healing applications, but most of these face limitations in either efficacy or cost-effectiveness. Therefore, there is a need to develop a unique material that can handle all of these concerns and be utilized for acute and chronic wounds. This study investigated mechanisms of new chitosan-based hydrocolloid patches in inflammatory reduction and skin formation by using wound-induced Sprague Dawley Rats. MATERIALS AND METHODS: Our study combined a hydrocolloid patch with chitosan to achieve a practical and accessible medical patch that would enhance skin wound healing. Our chitosan-embedded patch has shown a significant influence by preventing wound expansion and inflammation increment on Sprague Dawley rat models. RESULTS: The chitosan patch significantly increased the wound healing rate and accelerated the inflammatory stage by suppressing pro-inflammatory cytokines activity (e.g., TNF-α, IL-6, MCP-1, and IL-1ß). Moreover, the product was effective in promoting skin regeneration, demonstrated by the increase in the number of fibroblasts through specific biomarkers (e.g., vimentin, α-SMA, Ki-67, collagen I, and TGF-ß1). CONCLUSION: Our study on the chitosan-based hydrocolloid patches not only elucidated mechanisms of reducing inflammation and enhancing proliferation, but also provided a cost-effective method for skin wound dressing.


Assuntos
Quitosana , Ratos , Animais , Ratos Sprague-Dawley , Quitosana/farmacologia , Cicatrização , Pele , Coloides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA