Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Divers ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919619

RESUMO

Efflux pumps have been reported as one of the significant mechanisms by which bacteria evade the effects of multiple antibiotics. The tripartite efflux pump MexAB-OprM in Pseudomonas aeruginosa is one of the most significant multidrug efflux systems due to its broad resistance to antibiotics such as chloramphenicol, fluoroquinolones, lipophilic ß-lactam antibiotics, nalidixic acid, novobiocin, rifampicin, and tetracycline. A promising strategy to overcome this resistance mechanism is to combine antibiotics with efflux pump inhibitors (EPIs), which can increase their intracellular concentration to enhance their biological activities. Based on 143 EPIs with chemically diverse skeletons, the 3D pharmacophore and 2D-QSAR modelings were developed and used for the virtual screening on 9.2 million compounds including ZINC15, DrugBank, and Traditional Chinese Medicine databases to identify new EPIs. The molecular docking was also performed to evaluate the binding affinity of potential EPIs to the distal-binding pocket of MexB and resulted in 611 potential EPIs. The structure-activity relationship analyses suggested that nitrogen heterocyclic compounds, piperazine and pyridine scaffolds, and amide derivatives are the most favorable chemically features for MexAB inhibitory activities. The results from molecular dynamics analysis in 100 ns indicated that ZINC009296881 and ZINC009200074 were the most potential MexB inhibitors with strong binding affinity to the distal pocket and MM/GBSA ∆Gbind values of - 38.97 and - 30.19 kcal mol-1, respectively. The predicted pharmacokinetic properties and toxicity of these compounds indicated their potential oral drugs. Multistep virtual screening of EPIs for MexAB-OprM, efflux pump multidrug resistant of P. aeruginosa.

2.
Mol Divers ; 27(5): 2315-2330, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319930

RESUMO

IL(interleukin)-6 is a multifunctional cytokine crucial for immunological, hematopoiesis, inflammation, and bone metabolism. Strikingly, IL-6 has been shown to significantly contribute to the initiation of cytokine storm-an acute systemic inflammatory syndrome in Covid-19 patients. Recent study has showed that blocking the IL-6 signaling pathway with an anti-IL-6 receptor monoclonal antibody (mAb) can reduce the severity of COVID-19 symptoms and enhance patient survival. However, the mAb has several drawbacks, such as high cost, potential immunogenicity, and invasive administration due to the large-molecule protein product. Instead, these issues could be mitigated using small molecule IL-6 inhibitors, but none are currently available. This study aimed to discover IL-6 inhibitors based on the PPI with a novel camelid Fab fragment, namely 68F2, in a crystal protein complex structure (PDB ID: 4ZS7). The pharmacophore models and molecular docking were used to screen compounds from DrugBank databases. The oral bioavailability of the top 24 ligands from the screening was predicted by the SwissAMDE tool. Subsequently, the selected molecules from docking and MD simulation illustrated a promising binding affinity in the formation of stable complexes at the active binding pocket of IL-6. Binding energies using the MM-PBSA technique were applied to the top 4 hit compounds. The result indicated that DB08402 and DB12903 could form strong interactions and build stable protein-ligand complexes with IL-6. These potential compounds may serve as a basis for further developing small molecule IL-6 inhibitors in the future.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Interleucina-6 , Ligantes
3.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687204

RESUMO

Chemical profiling for quality monitoring and evaluation of medicinal plants is gaining attention. This study aims to develop an HPLC method followed by multivariate analysis to obtain HPLC profiles of five specific flavonoids, including rutin (1), hyperin (2), isoquercitrin (3), quercitrin (4), and quercetin (5) from Houttuynia cordata leaves and powder products and assess the quality of H. cordata samples. Eventually, we successfully established HPLC-based flavonoid profiles and quantified the contents of 32 H. cordata fresh leave samples and four powder products. The study also quantified the contents of those five essential flavonoids using an optimized RP-HPLC method. Peak areas of samples were then investigated with principal component analysis (PCA) and hierarchical cluster analysis (HCA) to evaluate the similarity and variance. Principal components in PCA strongly influenced by hyperin and quercetin showed that the samples were clustered into subgroups, demonstrating H. cordata samples' quality. The results of HCA showed the similarity and divided the samples into seven subgroups. In conclusion, we have successfully developed a practical methodology that combined the HPLC-based flavonoid profiling and multivariate analysis for the quantification and quality control of H. cordata samples from fresh leaves and powder products. For further studies, we will consider various environmental factors, including climate and soil factors, to investigate their effects on the flavonoid contents of H. cordata.


Assuntos
Flavonoides , Houttuynia , Quercetina , Cromatografia Líquida de Alta Pressão , Pós , Folhas de Planta
4.
Cancer Sci ; 113(7): 2311-2322, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35534985

RESUMO

Histone deacetylase 6 (HDAC6), a deacetylase of p53, has emerged as a privileged inhibitory target for cancer therapy because of its deacetylating activity for p53 at K120 and K373/382. However, intricate roles of HDAC6 in hepatocellular carcinogenesis have been suggested by recent evidence, namely that HDAC6 ablation suppresses innate immunity, which plays critical roles in tumor immunosurveillance and antitumor immune responses. Therefore, it is valuable to determine whether HDAC6 ablation inhibits hepatocellular carcinogenesis using in vivo animal models. Here, we firstly showed that HDAC6 ablation increased K320 acetylation of p53, known as pro-survival acetylation, in all tested animal models but did not always increase K120 and K373/382 acetylation of p53, known as pro-apoptotic acetylation. HDAC6 ablation induced cellular senescence in primary MEFs and inhibited cell proliferation in HepG2 cells and liver regeneration after two-thirds partial hepatectomy. However, the genetic ablation of HDAC6 did not inhibit hepatocarcinogenesis, but instead slightly enhanced it in two independent mouse models (DEN + HFD and DEN + TAA). Notably, HDAC6 ablation significantly promoted hepatocarcinogenesis in a multiple DEN treatment hepatocellular carcinoma (HCC) mouse model, mimicking chronic DNA damage in the liver, which correlated with hyperacetylation at K320 of p53 and a decrease in inflammatory cytokines and chemokines. Our data from three independent in vivo animal HCC models emphasize the importance of the complex roles of HDAC6 ablation in hepatocellular carcinogenesis, highlighting its immunosuppressive effects.


Assuntos
Carcinoma Hepatocelular , Desacetilase 6 de Histona , Neoplasias Hepáticas , Regeneração Hepática , Acetilação , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Desacetilase 6 de Histona/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Mol Divers ; 26(5): 2659-2678, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35031934

RESUMO

The interleukin-1 receptor like ST2 has emerged as a potential drug discovery target since it was identified as the receptor of the novel cytokine IL-33, which is involved in many inflammatory and autoimmune diseases. For the treatment of such IL-33-related disorders, efforts have been made to discover molecules that can inhibit the protein-protein interactions (PPIs) between IL-33 and ST2, but to date no drug has been approved. Although several anti-ST2 antibodies have entered clinical trials, the exploration of small molecular inhibitors is highly sought-after because of its advantages in terms of oral bioavailability and manufacturing cost. The aim of this study was to discover ST2 receptor inhibitors based on its PPIs with IL-33 in crystal structure (PDB ID: 4KC3) using virtual screening tools with pharmacophore modeling and molecular docking. From an enormous chemical space ZINC, a potential series of compounds has been discovered with stronger binding affinities than the control compound from a previous study. Among them, four compounds strongly interacted with the key residues of the receptor and had a binding free energy < - 20 kcal/mol. By intensive calculations using data from molecular dynamics simulations, ZINC59514725 was identified as the most potential candidate for ST2 receptor inhibitor in this study.


Assuntos
Interleucina-33 , Simulação de Dinâmica Molecular , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores de Interleucina-1 , Zinco
6.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232872

RESUMO

The World Health Organization declared monkeypox a global public health emergency on 23 July 2022. This disease was caused by the monkeypox virus (MPXV), which was first identified in 1958 in Denmark. The MPXV is a member of the Poxviridae family, the Chordopoxvirinae subfamily, and the genus Orthopoxvirus, which share high similarities with the vaccinia virus (the virus used to produce the smallpox vaccine). For the initial stage of infection, the MPXV needs to attach to the human cell surface glycosaminoglycan (GAG) adhesion molecules using its E8 protein. However, up until now, neither a structure for the MPXV E8 protein nor a specific cure for the MPXV exists. This study aimed to search for small molecules that inhibit the MPXV E8 protein, using computational approaches. In this study, a high-quality three-dimensional structure of the MPXV E8 protein was retrieved by homology modeling using the AlphaFold deep learning server. Subsequent molecular docking and molecular dynamics simulations (MDs) for a cumulative duration of 2.1 microseconds revealed that ZINC003977803 (Diosmin) and ZINC008215434 (Flavin adenine dinucleotide-FAD) could be potential inhibitors against the E8 protein with the MM/GBSA binding free energies of -38.19 ± 9.69 and -35.59 ± 7.65 kcal·mol-1, respectively.


Assuntos
Diosmina , Mpox , Vacina Antivariólica , Flavina-Adenina Dinucleotídeo , Glicosaminoglicanos , Humanos , Simulação de Acoplamento Molecular , Mpox/prevenção & controle , Monkeypox virus , Proteínas Virais
7.
Mol Divers ; 25(2): 741-751, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048150

RESUMO

The overexpression of ABCC2/MRP2, an ATP-binding cassette transporter, contributes to multidrug resistance in cancer cells. In this study, a quantitative structure-activity relationship (QSAR) analysis on ABCC2 inhibitors has been carried out, aiming to establish a computational prediction model for ABCC2 modulators. Seven classification models and two regression models were built by SONNIA 4.2, and two other regression models were built by MOE 2008.10 based on a data set comprising 372 compounds collected from 16 relevant publications. The CPG-C iABCC2 model for classifying ABCC2 inhibitors has total accuracy of 0.88 and Matthews correlation coefficient MCC = 0.75. The CPG-C iEG model for classifying ABCC2 inhibitors (substrate EG: ß-estradiol 17-ß-D-glucuronide) has total accuracy of 0.91 and MCC = 0.82. The regression model PLS EG-IC50 for predicting ABCC2 inhibitors (substrate EG) gave root-mean-square error RMSE = 0.26, Q2 = 0.73 and [Formula: see text]. The regression model PLS CDCF-IC50 for predicting ABCC2 inhibitors [substrate CDCF: 5(6)-carboxy-2',7'-dichlorofluorescein] gave RMSE = 0.31, Q2 = 0.74 and [Formula: see text]. Four 2D-QSAR models were applied to 1661 compounds, with results indicating 369 compounds having the ability to reverse the efflux of both EG and CDCF by ABCC2, 152 among them having IC50 < 100 µM.


Assuntos
Modelos Químicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Relação Quantitativa Estrutura-Atividade , Proteína 2 Associada à Farmacorresistência Múltipla , Análise de Regressão
8.
Molecules ; 26(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071039

RESUMO

ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 µM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
9.
Sensors (Basel) ; 20(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403333

RESUMO

The fiducial-marks-based alignment process is one of the most critical steps in printed circuit board (PCB) manufacturing. In the alignment process, a machine vision technique is used to detect the fiducial marks and then adjust the position of the vision system in such a way that it is aligned with the PCB. The present study proposed an embedded PCB alignment system, in which a rotation, scale and translation (RST) template-matching algorithm was employed to locate the marks on the PCB surface. The coordinates and angles of the detected marks were then compared with the reference values which were set by users, and the difference between them was used to adjust the position of the vision system accordingly. To improve the positioning accuracy, the angle and location matching process was performed in refinement processes. To overcome the matching time, in the present study we accelerated the rotation matching by eliminating the weak features in the scanning process and converting the normalized cross correlation (NCC) formula to a sum of products. Moreover, the scanning time was reduced by implementing the entire RST process in parallel on threads of a graphics processing unit (GPU) by applying hash functions to find refined positions in the refinement matching process. The experimental results showed that the resulting matching time was around 32× faster than that achieved on a conventional central processing unit (CPU) for a test image size of 1280 × 960 pixels. Furthermore, the precision of the alignment process achieved a considerable result with a tolerance of 36.4µm.

10.
Sensors (Basel) ; 20(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326497

RESUMO

It is essential to develop a simple and sensitive method to rapidly detect residual fungicides in agricultural products to protect human health. So far, little studies have been reported on potential application of gold nanospheres (AuNSps) as a surface plasmon resonance based sensor for in-situ detection of residual fungicides. Therefore, in this study, we investigated the potential application of AuNSps as a surface plasmon resonance based sensor for in-situ detection of fungicides. AuNSps were successfully synthesized via a seed-mediated method with some modifications. Firstly, gold nanoseeds were made during the reduction of chloroauric acid by trisodium citrate dihydrate (TSC). Then, AuNSps were grown from the seeds by using HAuCl4, TSC and EDTA. AuNSps were subsequently dropped on a glass substrate before covered by thiophanate methyl, a broad-spectrum systemic fungicide. The AuNSps coated glass substrate was subsequently dried in the air for further surface-enhanced Raman spectroscopy (SERS) measurements. Optical properties, shape and size of AuNSps were confirmed by UV-vis spectroscopy, XRD, SEM-EDX and TEM. The results showed that AuNSps were successfully synthesized with the size of 53 nm, and their resonance peak was located at 560 nm. The Raman signal intensity of thiophanate methyl covered on AuNSps is higher than that without AuNSps, indicating SERS effects of AuNSps deposited glass substrate.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Cloretos/química , Fungicidas Industriais/química , Compostos de Ouro/química , Nanosferas/química , Citrato de Sódio/química , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
11.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785161

RESUMO

Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes involved in the pathology of Alzheimer's disease. The former is responsible for many defects in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis of beta-amyloid as the main component of the amyloid plaques. These both abnormalities are found in the brains of Alzheimer's patients. In this study, in silico models were developed, including 3D-pharmacophore, 2D-QSAR (two-dimensional quantitative structure-activity relationship), and molecular docking, to screen virtually a database of compounds for AChE and BACE-1 inhibitory activities. A combinatorial library containing more than 3 million structures of curcumin and flavonoid derivatives was generated and screened for drug-likeness and enzymatic inhibitory bioactivities against AChE and BACE-1 through the validated in silico models. A total of 47 substances (two curcumins and 45 flavonoids), with remarkable predicted pIC50 values against AChE and BACE-1 ranging from 4.24-5.11 (AChE) and 4.52-10.27 (BACE-1), were designed. The in vitro assays on AChE and BACE-1 were performed and confirmed the in silico results. The study indicated that, by using in silico methods, a series of curcumin and flavonoid structures were generated with promising predicted bioactivities. This would be a helpful foundation for the experimental investigations in the future. Designed compounds which were the most feasible for chemical synthesis could be potential candidates for further research and lead optimization.


Assuntos
Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Curcumina/química , Flavonoides/química , Acetilcolinesterase/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Sítios de Ligação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Curcumina/metabolismo , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Flavonoides/metabolismo , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Relação Quantitativa Estrutura-Atividade
12.
Molecules ; 25(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899576

RESUMO

Acetylcholinesterase (AChE) and ß-secretase (BACE-1) have become attractive therapeutic targets for Alzheimer's disease (AD). Flavones are flavonoid derivatives with various bioactive effects, including AChE and BACE-1 inhibition. In the present work, a series of 14 flavone derivatives was synthesized in relatively high yields (35-85%). Six of the synthetic flavones (B4, B5, B6, B8, D6 and D7) had completely new structures. The AChE and BACE-1 inhibitory activities were tested, giving pIC50 3.47-4.59 (AChE) and 4.15-5.80 (BACE-1). Three compounds (B3, D5 and D6) exhibited the highest biological effects on both AChE and BACE-1. A molecular docking investigation was conducted to explain the experimental results. These molecules could be employed for further studies to discover new structures with dual action on both AChE and BACE-1 that could serve as novel therapies for AD.


Assuntos
Acetilcolinesterase/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores da Colinesterase/farmacologia , Simulação por Computador , Flavonas/síntese química , Flavonas/farmacologia , Acetilcolinesterase/química , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Flavonas/química , Modelos Lineares , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
13.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867308

RESUMO

Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer's disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional quantitative structure-activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and molecular docking investigation, were developed to elucidate the experimental process. The results indicated that 13 chalcone derivatives were synthesized with relatively high yields (39-81%). The bioactivities of these substances were examined with pIC50 3.73-5.96 (AChE) and 5.20-6.81 (BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4 and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances could be employed for further researches. In addition to this, the present study results suggested that, by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was possible to estimate the biological activities of the prepared compounds with relatively high accuracy.


Assuntos
Chalconas , Inibidores da Colinesterase , Fenotiazinas , Chalconas/síntese química , Chalconas/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Fenotiazinas/síntese química , Fenotiazinas/farmacologia , Relação Quantitativa Estrutura-Atividade
14.
J Environ Manage ; 209: 452-461, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309968

RESUMO

A novel nanohybrid: Fe3O4 coated with γ-APS polymer deposited on graphene oxide (F@γ-A/G), to remove an emergent heterocyclic contaminant benzotriazole (BTA) from solution. F@γ-A/G was synthesized in methanol-dispersion via aminosilanization under ultra-sonication. We newly found that F@γ-A/G crystallite lattice has a 2D triangular-network intersection with angle of 60° in three types of d311, d220 and d111 planes with different interplanar spacings. Textural characteristics did not affect BTA adsorption, which was desired at high temperature (40 °C), neutral solution (pH = 6) and controlled by endothermic process. Considering the maximum BTA adsorption capacity of 312.5 mg/g, which was much higher than previously reported adsorbents, the plausible mechanism was attributed to hydrophobic, electrostatic and π-π interaction. Effects of pH and temperature are significant on BTA adsorption to F@γ-A/G. Methanol was the best solvent for multiple cycle regeneration with only 2% loss of BTA removal efficiency even after five cycles of F@γ-A/G.


Assuntos
Grafite , Metanol , Triazóis , Poluentes Químicos da Água , Adsorção , Cinética , Óxidos , Purificação da Água
15.
Mol Divers ; 20(4): 945-961, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27431577

RESUMO

The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Chalcona/análogos & derivados , Chalcona/química , Simulação por Computador , Modelos Moleculares , Bibliotecas de Moléculas Pequenas , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Algoritmos , Chalcona/farmacologia , Bases de Dados Factuais , Descoberta de Drogas , Ligantes , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
16.
Molecules ; 21(3): 329, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-27005608

RESUMO

Chemically diverse heterocyclic chalcones were prepared and evaluated for cytotoxicity, aiming to push forward potency and selectivity. They were tested against rhabdomyosarcoma (RMS) and noncancerous cell line (LLC-PK1). The influence of heteroaryl patterns on rings A and B was studied. Heterocycle functionalities on both rings, such as phenothiazine, thiophene, furan and pyridine were evaluated. Notably, the introduction of three methoxy groups at positions 3, 4, 5 on ring B appears to be critical for cytotoxicity. The best compound, with potent and selective cytotoxicity (IC50 = 12.51 µM in comparison with the value 10.84 µM of paclitaxel), contains a phenothiazine moiety on ring A and a thiophene heterocycle on ring B. Most of the potential compounds only show weak cytoxicity on the noncancerous cell line LLC-PK1.


Assuntos
Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Compostos Heterocíclicos/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Suínos
17.
J Theor Biol ; 385: 31-9, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26341387

RESUMO

Based upon molecular docking, this study aimed to find notable in silico neuraminidase 9 (NA9) point mutations of the avian influenza A H7N9 virus that possess a Zanamivir resistant property and to determine the lead compound capable of inhibiting these NA9 mutations. Seven amino acids (key residues) at the binding site of neuraminidase 9 responsible for Zanamivir-NA9 direct interactions were identified and 72 commonly occurring mutant NA9 versions were created using the Sybyl-X 2.0 software. The docking scores obtained after Zanamivir was bound to all mutant molecules of NA9 revealed 3 notable mutations R292W, R118P, and R292K that could greatly reduce the binding affinity of the medicine. These 3 mutant NA9 versions were then bound to each of 154 different molecules chosen from 5 groups of compounds to determine which molecule(s) might be capable of inhibiting mutant neuraminidase 9, leading to the discovery of the lead compound of potent mutant NA9 inhibitors. This compound, together with other mutations occurring to NA9 identified in the study, would be used as data for further research regarding neuraminidase inhibitors and synthesizing new viable medications used in the fight against the virus.


Assuntos
Antivirais/farmacocinética , Subtipo H7N9 do Vírus da Influenza A/genética , Neuraminidase/genética , Mutação Puntual , Zanamivir/farmacocinética , Antivirais/farmacologia , Sítios de Ligação , Biologia Computacional/métodos , Simulação por Computador , Farmacorresistência Viral/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Neuraminidase/metabolismo , Zanamivir/farmacologia
18.
One Health ; 18: 100659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38179314

RESUMO

In the nature, Candida species are normal inhabitants and can be observed in a wide variety of vertebrates. In humans, especially for cancer patients who fall prey to opportunistic pathogens, this group of susceptible multi-drug resistant and biofilm-forming yeasts, are among the commonest ones. In this study, Candida species in 76 oral lesion samples from Vietnamese nasopharyngeal-cancer patients were isolated, morphologically identified using CHROMagar™, germ tube formation, and chlamydospore formation tests, and molecularly confirmed by PCR-RFLP. The drug susceptibility of these isolates was then tested, and the gene ERG11 was DNA sequenced to investigate the mechanism of resistance. The results showed that Candida albicans remained the most prevalent species (63.16% of the cases), followed by Candida glabrata, Candida tropicalis, and Candida krusei. The rates of resistance of non-albicans Candida for tested drugs were 85.71%, 53.57%, and 57.14% to fluconazole, clotrimazole, and miconazole, respectively. Although the drug-resistance rate of Candida albicans was lower than that of non-albicans Candida, it was higher than expected, suggesting an emerging drug-resistance phenomenon. Furthermore, ERG11 DNA sequencing revealed different mutations (especially K128T), implying the presence of multiple resistance mechanisms. Altogether, the results indicate an alarming drug-resistance situation in Candida species in Vietnamese cancer patients and emphasize the importance of species identification and their drug susceptibility prior to treatment.

19.
Heliyon ; 10(4): e25245, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420455

RESUMO

Background: Houttuynia cordata Thunb. has long been widely used as a daily vegetable and traditional medicine. The flavonoid component of H. cordata has plenty of pharmacological effects, such as antibacterial, anti-inflammatory, and antioxidant. In this study, we applied the aqueous two-phase system (ATPS) combined with ultrasonic extraction for extracting H. cordata leaves. Methods: We optimized the extraction process to improve the extraction efficiency of the two flavonoids, hyperin and quercitrin, by Surface Method Response - Central Composite Design (RSM-CCD). Next, we investigated the antibacterial ability of H. cordata ATPS extract from optimal conditions against two bacterial strains, Cutibacterium acnes and Staphylococcus epidermidis. Results: The results showed that using 10% (NH4)2SO4 and 35% ethanol for ATPS extraction resulted in the highest hyperin and quercitrin contents. From the RSM-CCD results, the optimal extraction conditions were determined to be ultrasonic extraction at 50 °C for 30 min, giving results consistent with the predicted model and obtaining hyperin and quercitrin contents at 1.5681 ± 0.0114 and 4.6225 ± 0.0327 mg/g, respectively.Furthermore, ATPS extract has excellent antibacterial activity with a minimum inhibitory concentration (MIC) value of 250 µg/mL on both C. acnes and S. epidermidis. This MIC is significantly lower than the H. cordata ultrasound-assisted (UA) extract, with MICs of 1500.00 and 156.25 µg/mL on C. acnes and S. epidermidis, respectively. In addition, the results from the disk diffusion assay also showed that ATPS extraction has superior internal antibacterial activity with a zone of inhibition diameter at 250 µg/mL of 8.67 ± 1.15 and 5.00 ± 2.00 mm. Meanwhile, those of UA extract on C. acnes is 5.67 ± 1.53 mm (at 1500 µg/mL), and on S. epidermidis is 1.34 ± 0.58 mm (at 156.25 µg/mL). Conclusion: To sum up, our research highlights the potential of H. cordata ATPS extracts as the starting material for topical preparations for effectively treating acne.

20.
Heliyon ; 10(5): e26783, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434284

RESUMO

In this study, we investigated the possibility of a photocatalytic system that uses graphene-quantum-dot (GQD)-deposited graphitic carbon nitride (g-C3N4) to treat tetracycline (TC) and other organic compounds generated from an in-situ-recirculatory-aquaculture-system (RAS)-like shrimp farming pond. GQDs were successfully deposited on the exfoliated g-C3N4 base through a hydrothermal treatment. The results showed that the incorporation of GQDs into the g-C3N4 enhanced its porosity without aggregating its mesoporous structure. The GQDs-deposited g-C3N4 photocatalysts revealed sheet-like structures with nanopores on their surface that facilitate photocatalysis. More than 90% of the TC was removed by the photocatalysts under UV-LED irradiation. Low loadings of GQDs over g-C3N4 resulted in a faster and more effective photocatalysis of TC, mainly driven by.O2- radicals. The photocatalysts were also applicable in the degradation of organic compounds with 27% of the total organic compounds (TOC) being removed from the wastewater of a RAS-like shrimp farming pond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA