Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270019

RESUMO

Endothelial cell senescence is involved in endothelial dysfunction and vascular diseases. However, the detailed mechanisms of endothelial senescence are not fully understood. Here, we demonstrated that deficiency of developmentally regulated GTP-binding protein 2 (DRG2) induces senescence and dysfunction of endothelial cells. DRG2 knockout (KO) mice displayed reduced cerebral blood flow in the brain and lung blood vessel density. We also determined, by Matrigel plug assay, aorta ring assay, and in vitro tubule formation of primary lung endothelial cells, that deficiency in DRG2 reduced the angiogenic capability of endothelial cells. Endothelial cells from DRG2 KO mice showed a senescence phenotype with decreased cell growth and enhanced levels of p21 and phosphorylated p53, γH2AX, senescence-associated ß-galactosidase (SA-ß-gal) activity, and senescence-associated secretory phenotype (SASP) cytokines. DRG2 deficiency in endothelial cells upregulated arginase 2 (Arg2) and generation of reactive oxygen species. Induction of SA-ß-gal activity was prevented by the antioxidant N-acetyl cysteine in endothelial cells from DRG2 KO mice. In conclusion, our results suggest that DRG2 is a key regulator of endothelial senescence, and its downregulation is probably involved in vascular dysfunction and diseases.


Assuntos
Células Endoteliais , Doenças Vasculares , Animais , Senescência Celular/genética , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/metabolismo
2.
Polymers (Basel) ; 15(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37376339

RESUMO

The synthesis of cationic polyacrylamides (CPAMs) with the desired cationic degree and molecular weight is essential for various industries, including wastewater treatment, mining, paper, cosmetic chemistry, and others. Previous studies have already demonstrated methods to optimize synthesis conditions to obtain high-molecular-weight CPAM emulsions and the effects of cationic degrees on flocculation processes. However, the optimization of input parameters to obtain CPAMs with the desired cationic degrees has not been discussed. Traditional optimization methods are time-consuming and costly when it comes to on-site CPAM production because the input parameters of CPAM synthesis are optimized using single-factor experiments. In this study, we utilized the response surface methodology to optimize the synthesis conditions, specifically the monomer concentration, the content of the cationic monomer, and the content of the initiator, to obtain CPAMs with the desired cationic degrees. This approach overcomes the drawbacks of traditional optimization methods. We successfully synthesized three CPAM emulsions with a wide range of cationic degrees: low (21.85%), medium (40.25%), and high (71.17%) levels of cationic degree. The optimized conditions for these CPAMs were as follows: monomer concentration of 25%, content of monomer cation of 22.5%, 44.41%, and 77.61%, respectively, and initiator content of 0.475%, 0.48%, and 0.59%, respectively. The developed models can be utilized to quickly optimize conditions for synthesizing CPAM emulsions with different cationic degrees to meet the demands of wastewater treatment applications. The synthesized CPAM products performed effectively in wastewater treatment, with the treated wastewater meeting the technical regulation parameters. 1H-NMR, FTIR, SEM, BET, dynamic light scattering, and gel permeation chromatography were employed to confirm the structure and surface of the polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA