Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Pediatr Blood Cancer ; 71(5): e30921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439088

RESUMO

The diagnosis of vascular anomalies remains challenging due to significant clinical heterogeneity and uncertain etiology. Evaluation using biopsy and/or genetic testing for somatic variants is invasive, expensive, and prone to sampling error. There is great need for noninvasive and easily measured blood laboratory biomarkers that can aid not only in diagnosis, but also management of treatments for vascular anomalies. Angiopoietin-2, a circulating blood angiogenic factor, is highly elevated in patients with kaposiform hemangioendothelioma with Kasabach-Merritt phenomenon and kaposiform lymphangiomatosis. Here, we describe our clinical experience using serum angiopoietin-2 as a biomarker for diagnosis and monitoring response to treatment.


Assuntos
Angiopoietina-2 , Malformações Vasculares , Humanos , Angiopoietina-2/sangue , Biomarcadores/sangue , Hemangioendotelioma/sangue , Hemangioendotelioma/diagnóstico , Hemangioendotelioma/terapia , Síndrome de Kasabach-Merritt/sangue , Síndrome de Kasabach-Merritt/diagnóstico , Síndrome de Kasabach-Merritt/terapia , Malformações Vasculares/sangue , Malformações Vasculares/diagnóstico , Malformações Vasculares/terapia
2.
Pediatr Blood Cancer ; 71(7): e31032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711167

RESUMO

BACKGROUND: Angiopoietin-2 (Ang-2) is increased in the blood of patients with kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE). While the genetic causes of KHE are not clear, a somatic activating NRASQ61R mutation has been found in the lesions of KLA patients. PROCEDURE: Our study tested the hypothesis that the NRASQ61R mutation drives elevated Ang-2 expression in endothelial cells. Ang-2 was measured in human endothelial progenitor cells (EPC) expressing NRASQ61R and a genetic mouse model with endothelial targeted NRASQ61R. To determine the signaling pathways driving Ang-2, NRASQ61R EPC were treated with signaling pathway inhibitors. RESULTS: Ang-2 levels were increased in EPC expressing NRASQ61R compared to NRASWT by Western blot analysis of cell lysates and ELISA of the cell culture media. Ang-2 levels were elevated in the blood of NRASQ61R mutant mice. NRASQ61R mutant mice also had reduced platelet counts and splenomegaly with hypervascular lesions, like some KLA patients. mTOR inhibitor rapamycin attenuated Ang-2 expression by NRASQ61R EPC. However, MEK1/2 inhibitor trametinib was more effective blocking increases in Ang-2. CONCLUSIONS: Our studies show that the NRASQ61R mutation in endothelial cells induces Ang-2 expression in vitro and in vivo. In cultured human endothelial cells, NRASQ61R drives elevated Ang-2 through MAP kinase and mTOR-dependent signaling pathways.


Assuntos
Angiopoietina-2 , Proteínas de Membrana , Animais , Humanos , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Mutação , Transdução de Sinais , Camundongos Transgênicos
3.
Pediatr Blood Cancer ; 70(4): e30219, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683202

RESUMO

Kaposiform lymphangiomatosis (KLA) is a life-threatening rare disease that can cause substantial morbidity, mortality, and social burdens for patients and their families. Diagnosis often occurs long after initial symptoms, and there are few centers in the world with the expertise to diagnose and care for patients with the disease. KLA is a lymphatic anomaly and significant advancements have been made in understanding its pathogenesis and etiology since its first description in 2014. This review provides multidisciplinary, comprehensive, and state-of-the-art information on KLA patient presentation, diagnostic imaging, pathology, organ involvement, genetics, and pathogenesis. Finally, we describe current therapeutic approaches, important areas for research, and challenges faced by patients and their families. Further insights into the pathogenesis of KLA may advance our understanding of other vascular anomalies given that similar signaling pathways may be involved.


Assuntos
Anormalidades Linfáticas , Humanos , Transdução de Sinais
4.
Angiogenesis ; 25(3): 331-342, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35391614

RESUMO

Somatic mutations in NRAS drive the pathogenesis of melanoma and other cancers but their role in vascular anomalies and specifically human endothelial cells is unclear. The goals of this study were to determine whether the somatic-activating NRASQ61R mutation in human endothelial cells induces abnormal angiogenesis and to develop in vitro and in vivo models to identify disease-causing pathways and test inhibitors. Here, we used mutant NRASQ61R and wild-type NRAS (NRASWT) expressing human endothelial cells in in vitro and in vivo angiogenesis models. These studies demonstrated that expression of NRASQ61R in human endothelial cells caused a shift to an abnormal spindle-shaped morphology, increased proliferation, and migration. NRASQ61R endothelial cells had increased phosphorylation of ERK compared to NRASWT cells indicating hyperactivation of MAPK/ERK pathways. NRASQ61R mutant endothelial cells generated abnormal enlarged vascular channels in a 3D fibrin gel model and in vivo, in xenografts in nude mice. These studies demonstrate that NRASQ61R can drive abnormal angiogenesis in human endothelial cells. Treatment with MAP kinase inhibitor U0126 prevented the change to a spindle-shaped morphology in NRASQ61R endothelial cells, whereas mTOR inhibitor rapamycin did not.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Membrana , Malformações Vasculares , Animais , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Mutação , Malformações Vasculares/genética
5.
Angiogenesis ; 23(3): 425-442, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32350708

RESUMO

Capillary lymphatic venous malformations (CLVM) are complex vascular anomalies characterized by aberrant and enlarged lymphatic and blood vessels. CLVM appear during fetal development and enlarge after birth, causing life-long complications such as coagulopathy, pulmonary embolism, chronic pain, and disfigurement. Treatment includes surgical debulking, amputation, and recurrent sclerotherapy. Somatic, mosaic mutations in the 110-kD catalytic α-subunit of phosphoinositide-3-kinase (PIK3CA) gene have been previously identified in affected tissues from CLVM patients; however, the cell population harboring the mutation is still unknown. In this study, we hypothesized that endothelial cells (EC) carry the PIK3CA mutations and play a major role in the cellular origin of CLVM. We isolated EC from the lesions of seven patients with CLVM and identified PIK3CA hotspot mutations. The CLVM EC exhibited constitutive phosphorylation of the PI3K effector AKT as well as hyperproliferation and increased resistance to cell death compared to normal EC. Inhibitors of PIK3CA (BYL719) and AKT (ARQ092) attenuated the proliferation of CLVM EC in a dose-dependent manner. A xenograft model of CLVM was developed by injecting patient-derived EC into the flanks of immunocompromised mice. CLVM EC formed lesions with enlarged lymphatic and vascular channels, recapitulating the patient histology. EC subpopulations were further obtained by both immunomagnetic separation into lymphatic EC (LEC) and vascular EC (VEC) and generation of clonal populations. By sequencing these subpopulations, we determined that both LEC and VEC from the same patient express the PIK3CA mutation, exhibit increased AKT activation and can form lymphatic or vascular lesions in mouse.


Assuntos
Capilares/anormalidades , Classe I de Fosfatidilinositol 3-Quinases , Células Endoteliais da Veia Umbilical Humana , Vasos Linfáticos , Mutação , Malformações Vasculares , Adulto , Animais , Capilares/enzimologia , Capilares/patologia , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Lactente , Vasos Linfáticos/anormalidades , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Masculino , Camundongos , Camundongos Nus , Malformações Vasculares/enzimologia , Malformações Vasculares/genética , Malformações Vasculares/patologia
6.
Arterioscler Thromb Vasc Biol ; 39(3): 496-512, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626204

RESUMO

Objective- Venous malformations (VMs) arise from developmental defects of the vasculature and are characterized by massively enlarged and tortuous venous channels. VMs grow commensurately leading to deformity, obstruction of vital structures, bleeding, and pain. Most VMs are associated with the activating mutation L914F in the endothelial cell (EC) tyrosine kinase receptor TIE2. Therapeutic options for VM are limited and ineffective while therapy with the mammalian target of rapamycin inhibitor rapamycin shows moderate efficacy. Here, we investigated novel therapeutic targets promoting VM regression. Approach and Results- We performed an unbiased screen of Food and Drug Administration-approved drugs in human umbilical vein ECs expressing the TIE2-L914F mutation (HUVEC-TIE2-L914F). Three ABL (Abelson) kinase inhibitors prevented cell proliferation of HUVEC-TIE2-L914F. Moreover, c-ABL, common target of these inhibitors, was highly phosphorylated in HUVEC-TIE2-L914F and VM patient-derived ECs with activating TIE2 mutations. Knockdown of c-ABL/ARG in HUVEC-TIE2-L914F reduced cell proliferation and vascularity of murine VM. Combination treatment with the ABL kinase inhibitor ponatinib and rapamycin caused VM regression in a xenograft model based on injection of HUVEC-TIE2-L914F. A reduced dose of this drug combination was effective in this VM murine model with minimal side effects. The drug combination was antiproliferative, enhanced cell apoptosis and vascular channel regression both in vivo and in a 3-dimensional fibrin gel assay. Conclusions- This is the first report of a combination therapy with ponatinib and rapamycin promoting regression of VM. Mechanistically, the drug combination enhanced AKT inhibition compared with single drug treatment and reduced PLCγ (phospholipase C) and ERK (extracellular signal-regulated kinase) activity.


Assuntos
Imidazóis/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/uso terapêutico , Sirolimo/uso terapêutico , Malformações Vasculares/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana/transplante , Humanos , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Nus , Mutação de Sentido Incorreto , Fosfolipase C gama/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Piridazinas/administração & dosagem , Piridazinas/farmacologia , Receptor TIE-2/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Malformações Vasculares/patologia
7.
Pediatr Blood Cancer ; 67(9): e28529, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32634277

RESUMO

Kaposiform lymphangiomatosis (KLA) is a rare, life-threatening congenital lymphatic malformation. Diagnosis is often delayed due to complex indistinct symptoms. Blood angiopoietin-2 (ANG2) levels are elevated in KLA and may be useful as a biomarker to monitor disease status. We report a 7-year-old male child with easy bruising, inguinal swelling, and consumptive coagulopathy, diagnosed with KLA. A multimodal treatment regimen of prednisone, sirolimus, vincristine, and adjunctive zoledronate was used. Plasma ANG2 levels were highly elevated at diagnosis but decreased during treatment. The patient showed significant clinical improvement over a 38-month period and normalization of ANG2 levels correlated with resolution of the coagulopathy.


Assuntos
Angiopoietina-2/sangue , Hemangioendotelioma/terapia , Síndrome de Kasabach-Merritt/terapia , Sarcoma de Kaposi/terapia , Trombose/prevenção & controle , Criança , Terapia Combinada , Hemangioendotelioma/sangue , Hemangioendotelioma/patologia , Humanos , Síndrome de Kasabach-Merritt/sangue , Síndrome de Kasabach-Merritt/patologia , Masculino , Prognóstico , Sarcoma de Kaposi/sangue , Sarcoma de Kaposi/patologia , Trombose/sangue , Trombose/patologia
8.
Am J Respir Cell Mol Biol ; 60(1): 106-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30134121

RESUMO

Patients with pulmonary arterial hypertension (PAH) can harbor mutations in several genes, most commonly in BMPR2. However, disease penetrance in patients with BMPR2 mutations is low. In addition, most patients do not carry known PAH gene mutations, suggesting that other factors determine susceptibility to PAH. To begin to identify additional genomic factors contributing to PAH pathogenesis, we exposed 32 mouse strains to chronic hypoxia. We found that the PL/J strain has extremely high right ventricular systolic pressure (RVSP; 86.58 mm Hg) but minimal lung remodeling. To identify potential genomic factors contributing to the high RVSP, RNAseq analysis of PL/J lung mRNAs and microRNAs (miRNAs) after hypoxia was performed, and it demonstrated that 4 of 43 upregulated miRNAs in the Dlk1-Dio3 imprinting region are predicted to target T cell marker mRNAs. These target mRNAs, as well as the numbers of T cells were downregulated. In addition, C5a and its receptor, C5AR1, were increased. Analysis of Rho-associated protein kinase (Rock) 2 mRNA expression, in the RhoA/Rock pathway, demonstrated a significant increase in PL/J. Inhibition of Rock2 ameliorated a portion of the elevated RVSP. In addition, we identified miR-150-5p as a potential regulator of Rock2 expression. In conclusion, we identified two possible pathways contributing to the hypoxia pulmonary hypertension phenotype of extreme RVSP elevation: aberrant T cell expression driven by hypoxia-induced miRNAs and increased expression of C5a and C5AR1. We suggest that the PL/J mouse will be a good model for seeking mechanism(s) of RVSP elevation in hypoxia-induced PAH.


Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , MicroRNAs/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Transdução de Sinais
9.
Pediatr Blood Cancer ; 66(8): e27790, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045327

RESUMO

BACKGROUND: Kaposiform lymphangiomatosis (KLA) is a rare lymphatic anomaly with significant morbidity and mortality. KLA is characterized by diffuse multifocal lesions comprised of focal areas of "kaposiform" spindled cells accompanying malformed lymphatic channels. The goal of this study was to identify activated signaling pathways in cells isolated from three KLA patients for the purpose of testing new therapies. PROCEDURE: Cells were obtained from the lungs of one patient isolated at autopsy and the spleen of two patients removed in surgery due to disease complications. A protein kinase array was performed on the KLA cell lysates and normal lymphatic endothelial cells. RESULTS: Higher activation of key signaling pathways in the KLA cells, including PRAS40, AKT1/2/3, and ERK-1/2, was identified by protein kinase array and confirmed by Western blot analysis. This indicated a role for highly activated PI3K-AKT and MAPK-ERK-1/2 signaling pathways in KLA cells. Cell proliferation studies assessed PI3K inhibitors (LY294002; BYL719), AKT inhibitor ARQ092, mTOR inhibitor rapamycin, and MAPK inhibitor U0126. These studies demonstrated that PI3K-AKT-mTOR and MAPK signaling are important mediators of KLA cell proliferation. BYL719 and rapamycin were more effective at inhibiting KLA cell proliferation than U0126. CONCLUSIONS: Our studies using cells from KLA patient lesions demonstrate that these cells are highly proliferative and the PI3K-AKT-mTOR and MAPK pathways are promising therapeutic targets. Development and clinical trials of PI3K, AKT, and MAPK inhibitors for cancer treatment and the data in this study lend support for early clinical trials assessing the efficacy of these inhibitors in KLA patients.


Assuntos
Antineoplásicos/farmacologia , Hemangioendotelioma/patologia , Síndrome de Kasabach-Merritt/patologia , Linfangioma/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sarcoma de Kaposi/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adolescente , Proliferação de Células/efeitos dos fármacos , Pré-Escolar , Feminino , Seguimentos , Hemangioendotelioma/tratamento farmacológico , Hemangioendotelioma/metabolismo , Humanos , Lactente , Síndrome de Kasabach-Merritt/tratamento farmacológico , Síndrome de Kasabach-Merritt/metabolismo , Linfangioma/tratamento farmacológico , Linfangioma/metabolismo , Masculino , Inibidores de Proteínas Quinases/farmacologia , Estudos Retrospectivos , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
10.
Clin Sci (Lond) ; 132(3): 327-338, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29269381

RESUMO

Airway remodelling and allergic inflammation are key features of airway hyperresponsiveness (AHR) in asthma; however, their interrelationships are unclear. The present study investigated the separate and combined effects of increased airway smooth muscle (ASM) layer thickness and allergy on AHR. We integrated a protocol of ovalbumin (OVA)-induced allergy into a non-inflammatory mouse model of ASM remodelling induced by conditional and airway-specific expression of transforming growth factor-α (TGF-α) in early growth response-1 (Egr-1)-deficient transgenic mice, which produced thickening of the ASM layer following ingestion of doxycycline. Mice were sensitised to OVA and assigned to one of four treatment groups: Allergy - normal chow diet and OVA challenge; Remodelling - doxycycline in chow and saline challenge; Allergy and Remodelling - doxycycline in chow and OVA challenge; and Control - normal chow diet and saline challenge. Airway responsiveness to methacholine (MCh) and histology were assessed. Compared with the Control group, airway responsiveness to MCh was increased in the Allergy group, independent of changes in wall structure, whereas airway responsiveness in the Remodelling group was increased independent of exposure to aeroallergen. The combined effects of allergy and remodelling on airway responsiveness were greater than either of them alone. There was a positive relationship between the thickness of the ASM layer with airway responsiveness, which was shifted upward in the presence of allergy. These findings support allergy and airway remodelling as independent causes of variable and excessive airway narrowing.


Assuntos
Remodelação das Vias Aéreas/imunologia , Alérgenos/imunologia , Hiper-Reatividade Brônquica/imunologia , Hipersensibilidade Respiratória/imunologia , Remodelação das Vias Aéreas/genética , Animais , Asma/genética , Asma/imunologia , Hiper-Reatividade Brônquica/genética , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Hipersensibilidade/genética , Camundongos Knockout , Músculo Liso/imunologia , Hipersensibilidade Respiratória/genética
11.
Angiogenesis ; 20(1): 163-173, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27990590

RESUMO

Vascular anomalies can cause significant morbidity and mortality. Advances in diagnosis will be improved if noninvasive biomarkers can be identified, as obtaining a tissue biopsy can worsen the disease and precipitate complications. The goal of this study was to identify biomarkers for vascular anomaly patients to aid diagnosis and potentially give insights into pathogenesis. Blood was collected at baseline and then 6 and 12 months after treatment with the mTOR inhibitor sirolimus. Patients groups included generalized lymphatic anomaly (GLA), kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE) with or without the Kasabach-Merritt phenomenon (KMP) coagulopathy. Serum was obtained from healthy controls selected to match the age and sex of the patients (21 days-28.5 years; 42% males; 58% females). Angiogenic and lymphangiogenic factors (VEGF-A, C, D, Ang-1 and Ang-2) were measured in serum using ELISA. In lymphatic anomaly patients, baseline levels of VEGF-A and VEGF-D were not different compared to controls. Angiopoietin-2 (Ang-2) levels were near controls levels in GLA patients but 10-fold greater in KLA patients and 14-fold greater in KHE patients when the KMP coagulopathy was present but not when it was absent. VEGF-C and angiopoietin-1 (Ang-1) levels were lower in KHE patients with KMP. Our analyses suggest that Ang-2 and Ang-1 can be used as biomarkers to help identify KLA and KHE patients with KMP coagulopathy with high sensitivity and specificity. After 12 months of sirolimus treatment, Ang-2 levels were lower in KLA and KHE with KMP patients compared to baseline levels and with most patients showing a clinical response. Hence, serum Ang-2 and Ang-1 levels may help in the diagnosis of patients with lymphatic anomalies and are concordant to sirolimus response.


Assuntos
Angiopoietinas/sangue , Sistema Linfático/anormalidades , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Sistema Linfático/efeitos dos fármacos , Sistema Linfático/patologia , Masculino , Análise Multivariada , Sensibilidade e Especificidade , Sirolimo/farmacologia , Adulto Jovem
15.
J Allergy Clin Immunol ; 132(5): 1194-1204.e2, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24060272

RESUMO

BACKGROUND: IL-17A has been implicated in severe forms of asthma. However, the factors that promote IL-17A production during the pathogenesis of severe asthma remain undefined. Diesel exhaust particles (DEPs) are a major component of traffic-related air pollution and are implicated in asthma pathogenesis and exacerbation. OBJECTIVE: We sought to determine the mechanism by which DEP exposure affects asthma severity using human and mouse studies. METHODS: BALB/c mice were challenged with DEPs with or without house dust mite (HDM) extract. Airway inflammation and function, bronchoalveolar lavage fluid cytokine levels, and flow cytometry of lung T cells were assessed. The effect of DEP exposure on the frequency of asthma symptoms and serum cytokine levels was determined in children with allergic asthma. RESULTS: In mice exposure to DEPs alone did not induce asthma. DEP and HDM coexposure markedly enhanced airway hyperresponsiveness compared with HDM exposure alone and generated a mixed T(H)2 and T(H)17 response, including IL-13(+)IL-17A(+) double-producing T cells. IL-17A neutralization prevented DEP-induced exacerbation of airway hyperresponsiveness. Among 235 high DEP-exposed children with allergic asthma, 32.2% had more frequent asthma symptoms over a 12-month period compared with only 14.2% in the low DEP-exposed group (P = .002). Additionally, high DEP-exposed children with allergic asthma had nearly 6 times higher serum IL-17A levels compared with low DEP-exposed children. CONCLUSIONS: Expansion of T(H)17 cells contributes to DEP-mediated exacerbation of allergic asthma. Neutralization of IL-17A might be a useful potential therapeutic strategy to counteract the asthma-promoting effects of traffic-related air pollution, especially in highly exposed patients with severe allergic asthma.


Assuntos
Asma/etiologia , Interleucina-17/biossíntese , Emissões de Veículos , Adolescente , Alérgenos/imunologia , Animais , Criança , Pré-Escolar , Citocinas/biossíntese , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Inflamação/etiologia , Exposição por Inalação/efeitos adversos , Interleucina-17/sangue , Selectina L/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/etiologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Emissões de Veículos/toxicidade
16.
J Immunol ; 187(11): 5756-63, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22021618

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway integrates environmental cues, promotes cell growth/differentiation, and regulates immune responses. Although inhibition of mTOR with rapamycin has potent immunosuppressive activity, mixed effects have been reported in OVA-induced models of allergic asthma. We investigated the impact of two rapamycin treatment protocols on the major characteristics of allergic asthma induced by the clinically relevant allergen, house dust mite (HDM). In protocol 1, BALB/c mice were exposed to 10 intranasal HDM doses over a period of 24 d and treated with rapamycin simultaneously during the sensitization/exposure period. In protocol 2, rapamycin was administered after the mice had been sensitized to HDM (i.p. injection) and prior to initiation of two intranasal HDM challenges over 4 d. Airway hyperreactivity (AHR), IgE, inflammatory cells, cytokines, leukotrienes, goblet cells, and activated T cells were assessed. In protocol 1, rapamycin blocked HDM-induced increases in AHR, inflammatory cell counts, and IgE, as well as attenuated goblet cell metaplasia. In protocol 2, rapamycin blocked increases in AHR, IgE, and T cell activation and reduced goblet cell metaplasia, but it had no effect on inflammatory cell counts. Increases in IL-13 and leukotrienes were also blocked by rapamycin, although increases in IL-4 were unaffected. These data demonstrated that rapamycin can inhibit cardinal features of allergic asthma, including increases in AHR, IgE, and goblet cells, most likely as a result of its ability to reduce the production of two key mediators of asthma: IL-13 and leukotrienes. These findings highlight the importance of the mTOR pathway in allergic airway disease.


Assuntos
Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Células Caliciformes/efeitos dos fármacos , Imunoglobulina E/biossíntese , Imunossupressores/farmacologia , Sirolimo/farmacologia , Animais , Asma/imunologia , Western Blotting , Hiper-Reatividade Brônquica/imunologia , Separação Celular , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Células Caliciformes/imunologia , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
17.
J Allergy Clin Immunol ; 127(1): 254-61, 261.e1-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21126757

RESUMO

BACKGROUND: Asthma is a major public health burden worldwide. Studies from our group and others have demonstrated that SERPINB3 and SERPINB4 are induced in patients with asthma; however, their mechanistic role in asthma has yet to be determined. OBJECTIVE: To evaluate the role of Serpin3a, the murine homolog of SERPINB3 and SERPINB4, in asthma. METHODS: We studied wild-type Balb/c and Serpinb3a-null mice in house dust mite or IL-13-induced asthma models and evaluated airway hyperresponsiveness, inflammation, and goblet cell hyperplasia. RESULTS: Airway hyperresponsiveness and goblet cell hyperplasia were markedly attenuated in the Serpinb3a-null mice compared with the wild-type mice after allergen challenge, with minimal effects on inflammation. Expression of sterile alpha motif pointed domain containing v-ets avian erythroblastosis virus E26 oncogene homolog transcription factor (SPDEF), a transcription factor that mediates goblet cell hyperplasia, was decreased in the absence of Serpinb3a. IL-13-treated Serpinb3a-null mice showed attenuated airway hyperresponsiveness, inflammation, and mucus production. CONCLUSION: Excessive mucus production and mucus plugging are key pathologic features of asthma, yet the mechanisms responsible for mucus production are not well understood. Our data reveal a novel nonredundant role for Serpinb3a in mediating mucus production through regulation of SPDEF expression. This pathway may be used to target mucus hypersecretion effectively.


Assuntos
Asma/imunologia , Muco/imunologia , Proteínas Proto-Oncogênicas c-ets/imunologia , Serpinas/imunologia , Animais , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Expressão Gênica , Regulação da Expressão Gênica/imunologia , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Muco/metabolismo , Proteínas Proto-Oncogênicas c-ets/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serpinas/metabolismo
18.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L414-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21224214

RESUMO

Increases in the epidermal growth factor receptor (EGFR) have been associated with the severity of airway thickening in chronic asthmatic subjects, and EGFR signaling is induced by asthma-related cytokines and inflammation. The goal of this study was to determine the role of EGFR signaling in a chronic allergic model of asthma and specifically in epithelial cells, which are increasingly recognized as playing an important role in asthma. EGFR activation was assessed in mice treated with intranasal house dust mite (HDM) for 3 wk. EGFR signaling was inhibited in mice treated with HDM for 6 wk, by using either the drug erlotinib or a genetic approach that utilizes transgenic mice expressing a mutant dominant negative epidermal growth factor receptor in the lung epithelium (EGFR-M mice). Airway hyperreactivity (AHR) was assessed by use of a flexiVent system after increasing doses of nebulized methacholine. Airway smooth muscle (ASM) thickening was measured by morphometric analysis. Sensitization to HDM (IgG and IgE), inflammatory cells, and goblet cell changes were also assessed. Increased EGFR activation was detected in HDM-treated mice, including in bronchiolar epithelial cells. In mice exposed to HDM for 6 wk, AHR and ASM thickening were reduced after erlotinib treatment and in EGFR-M mice. Sensitization to HDM and inflammatory cell counts were similar in all groups, except neutrophil counts, which were lower in the EGFR-M mice. Goblet cell metaplasia with HDM treatment was reduced by erlotinib, but not in EGFR-M transgenic mice. This study demonstrates that EGFR signaling, especially in the airway epithelium, plays an important role in mediating AHR and remodeling in a chronic allergic asthma model.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/complicações , Células Epiteliais/enzimologia , Receptores ErbB/metabolismo , Transdução de Sinais , Animais , Asma/complicações , Asma/parasitologia , Asma/patologia , Hiper-Reatividade Brônquica/parasitologia , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Doença Crônica , Modelos Animais de Doenças , Ativação Enzimática , Células Epiteliais/patologia , Receptores ErbB/antagonistas & inibidores , Células Caliciformes/patologia , Inflamação/complicações , Inflamação/patologia , Pulmão/parasitologia , Pulmão/patologia , Pulmão/fisiopatologia , Metaplasia , Camundongos , Músculo Liso/patologia , Pyroglyphidae/fisiologia
19.
Am J Pathol ; 176(2): 679-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20042669

RESUMO

Transforming growth factor-alpha (TGFalpha) is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. EGFR signaling activates several intracellular signaling pathways including phosphatidylinositol 3'-kinase (PI3K). We previously showed that induction of lung-specific TGFalpha expression in transgenic mice caused progressive pulmonary fibrosis over a 4-week period. The increase in levels of phosphorylated Akt, detected after 1 day of doxycycline-induced TGFalpha expression, was blocked by treatment with the PI3K inhibitor, PX-866. Daily administration of PX-866 during TGFalpha induction prevented increases in lung collagen and airway resistance as well as decreases in lung compliance. Treatment of mice with oral PX-866 4 weeks after the induction of TGFalpha prevented additional weight loss and further increases in total collagen, and attenuated changes in pulmonary mechanics. These data show that PI3K is activated in TGFalpha/EGFR-mediated pulmonary fibrosis and support further studies to determine the role of PI3K activation in human lung fibrotic disease, which could be amenable to targeted therapy.


Assuntos
Gonanos/farmacologia , Gonanos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Fator de Crescimento Transformador alfa , Administração Oral , Animais , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Gonanos/administração & dosagem , Camundongos , Camundongos Transgênicos , Proteína Oncogênica v-akt/metabolismo , Fosforilação/efeitos dos fármacos , Uteroglobina/genética
20.
Am J Respir Cell Mol Biol ; 41(5): 562-72, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19244201

RESUMO

Transforming growth factor (TGF)-alpha is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. Overexpression of TGF-alpha in transgenic mice causes progressive and severe pulmonary fibrosis; however, the intracellular signaling pathways downstream of EGFR mediating this response are unknown. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we observed increased PCNA protein and phosphorylation of Akt and p70S6K in whole lung homogenates in association with induction of TGF-alpha. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over a 7-week period. Daily administration of rapamycin prevented accumulation of total lung collagen, weight loss, and changes in pulmonary mechanics. Treatment of mice with rapamycin 4 weeks after the induction of TGF-alpha prevented additional weight loss, increases in total collagen, and changes in pulmonary mechanics. Rapamycin prevented further increases in established pulmonary fibrosis induced by EGFR activation. This study demonstrates that mammalian target of rapamycin (mTOR) is a major effector of EGFR-induced pulmonary fibrosis, providing support for further studies to determine the role of mTOR in the pathogenesis and treatment of pulmonary fibrosis.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pulmão/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fibrose Pulmonar/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Fator de Crescimento Transformador alfa/metabolismo , Animais , Proteínas de Transporte/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Doxiciclina/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Regulação da Expressão Gênica , Humanos , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/fisiopatologia , Quinazolinas/farmacologia , Mecânica Respiratória/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR , Fatores de Tempo , Fator de Crescimento Transformador alfa/genética , Uteroglobina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA