Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 118(4): 607-620, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27411681

RESUMO

Background Recently developed genetic and pharmacological approaches have been used to explore NO3-/ethylene signalling interactions and how the modifications in root architecture by pharmacological modulation of ethylene biosynthesis affect nitrate uptake. Key Results Structure-function studies combined with recent approaches to chemical genomics highlight the non-specificity of commonly used inhibitors of ethylene biosynthesis such as AVG (l-aminoethoxyvinylglycine). Indeed, AVG inhibits aminotransferases such as ACC synthase (ACS) and tryptophan aminotransferase (TAA) involved in ethylene and auxin biosynthesis but also some aminotransferases implied in nitrogen (N) metabolism. In this framework, it can be assumed that the products of nitrate assimilation and hormones may interact through a hub in carbon (C) and N metabolism to drive the root morphogenetic programme (RMP). Although ethylene/auxin interactions play a major role in cell division and elongation in root meristems, shaping of the root system depends also on energetic considerations. Based on this finding, the analysis is extended to nutrient ion-hormone interactions assuming a fractal or constructal model for root development. Conclusion Therefore, the tight control of root structure-function in the RMP may explain why over-expressing nitrate transporter genes to decouple structure-function relationships and improve nitrogen use efficiency (NUE) has been unsuccessful.

2.
Ann Bot ; 113(6): 991-1005, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638820

RESUMO

BACKGROUND AND AIMS: In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act at different levels of time and on different spatial scales. METHODS: A cross-combination of a Flow-Force approach applied to nitrate influx isotherms and experimentally determined environmental and in planta regulation is used to model nitrate in oilseed rape, Brassica napus. In contrast to 'Enzyme-Substrate' interpretations, a Flow-Force modelling approach considers the root as a single catalytic structure and does not infer hypothetical cellular processes among nitrate transporter activities across cellular layers in the mature roots. In addition, this approach accounts for the driving force on ion transport based on the gradient of electrochemical potential, which is more appropriate from a thermodynamic viewpoint. KEY RESULTS AND CONCLUSIONS: Use of a Flow-Force formalism on nitrate influx isotherms leads to the development of a new conceptual mechanistic basis to model more accurately N uptake by a winter oilseed rape crop under field conditions during the whole growth cycle. This forms the functional component of a proposed new structure-function mechanistic model of N uptake.


Assuntos
Modelos Biológicos , Nitratos/metabolismo , Plantas/metabolismo , Transporte Biológico , Termodinâmica
3.
Ann Bot ; 113(6): 1007-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24709791

RESUMO

Background and Aims An updated version of a mechanistic structural-functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions. Methods The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow-Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root. Key Results Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0-30 and 30-60 cm) contained 75-88 % of the total root length and biomass, and accounted for 90-95 % of N taken up at harvest. Conclusions This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels.


Assuntos
Modelos Biológicos , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Termodinâmica
4.
Ann Bot ; 114(8): 1555-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25425406

RESUMO

BACKGROUND: The top-down analysis of nitrate influx isotherms through the Enzyme-Substrate interpretation has not withstood recent molecular and histochemical analyses of nitrate transporters. Indeed, at least four families of nitrate transporters operating at both high and/or low external nitrate concentrations, and which are located in series and/or parallel in the different cellular layers of the mature root, are involved in nitrate uptake. Accordingly, the top-down analysis of the root catalytic structure for ion transport from the Enzyme-Substrate interpretation of nitrate influx isotherms is inadequate. Moreover, the use of the Enzyme-Substrate velocity equation as a single reference in agronomic models is not suitable in its formalism to account for variations in N uptake under fluctuating environmental conditions. Therefore, a conceptual paradigm shift is required to improve the mechanistic modelling of N uptake in agronomic models. SCOPE: An alternative formalism, the Flow-Force theory, was proposed in the 1970s to describe ion isotherms based upon biophysical 'flows and forces' relationships of non-equilibrium thermodynamics. This interpretation describes, with macroscopic parameters, the patterns of N uptake provided by a biological system such as roots. In contrast to the Enzyme-Substrate interpretation, this approach does not claim to represent molecular characteristics. Here it is shown that it is possible to combine the Flow-Force formalism with polynomial responses of nitrate influx rate induced by climatic and in planta factors in relation to nitrate availability. CONCLUSIONS: Application of the Flow-Force formalism allows nitrate uptake to be modelled in a more realistic manner, and allows scaling-up in time and space of the regulation of nitrate uptake across the plant growth cycle.


Assuntos
Absorção Fisiológica , Modelos Biológicos , Raízes de Plantas/metabolismo , Transporte de Íons , Cinética , Termodinâmica
5.
J Exp Bot ; 64(10): 2725-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23811694

RESUMO

The modification of root traits in relation to nitrate uptake represents a source for improvement of nitrogen uptake efficiency. Because ethylene signalling modulates growth of exploratory and root hair systems more rapidly (minutes to hours) than nitrate signalling (days to weeks), a pharmacological approach was used to decipher the relationships between root elongation and N uptake. Rape seedlings were grown on agar plates supplied with 1mM K(15)NO3 and treated with different concentrations of either the ethylene precursor, ACC (0.1, 1, and 10 µM) or an inhibitor of ethylene biosynthesis, AIB (0.5 and 1 µM). The results showed that rapid modulation of root elongation (up to 8-fold) is more dependent on the ethylene than the nitrate signal. Indeed, ACC treatment induced a partial compensatory increase in (15)N uptake associated with overexpression of the BnNRT2.1 and BnNRT1.1 genes. Likewise, daily root elongation between treatments was not associated with daily nitrate uptake but was correlated with N status. This suggested that a part of the daily root response was modulated by cross talks between ethylene signalling and N and C metabolisms. This was confirmed by the reduction in C allocation to the roots induced by ACC treatment and the correlations of changes in the root length and shoot surface area with the aspartate content. The observed effects of ethylene signalling in the root elongation and NRT gene expression are discussed in the context of the putative role of NRT2.1 and NRT1.1 transporters as nitrate sensors.


Assuntos
Aminoácidos Cíclicos/farmacologia , Ácidos Aminoisobutíricos/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Etilenos/biossíntese , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Compostos de Potássio/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico/efeitos dos fármacos , Brassica napus/química , Brassica napus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Cinética , Transportadores de Nitrato , Nitratos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Compostos de Potássio/química
6.
Front Plant Sci ; 11: 1253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384698

RESUMO

With regard to thermodynamics out of equilibrium, seedlings are open systems that dissipate energy towards their environment. Accordingly, under nutritional steady-state conditions, changes in external concentrations of one single ion provokes instability and reorganization in the metabolic and structure/architecture of the seedling that is more favorable to the fluxes of energy and matter. This reorganization is called a bifurcation and is described in mathematics as a non-linear dynamic system. In this study, we investigate the non-linear dynamics of 15N fluxes among cellular compartments of B. napus seedlings in response to a wide range of external NO 3 - 15 concentrations (from 0.05 to 20 mM): this allows to determine whether any stationary states and bifurcations could be found. The biphasic behavior of the root NO 3 - 15 uptake rate (vin ) was explained by the combined cooperative properties between the vapp (N uptake, storage and assimilation rate) and vout (N translocation rate) 15N fluxes that revealed a unique and stable stationary state around 0.28 mM nitrate. The disappearance of this stationary state around 0.5 mM external nitrate concentrations provokes a dramatic bifurcation in 15N flux pattern. This bifurcation in the vin and vout 15N fluxes fits better with the increase of BnNPF6.3/NRT1.1 expression than BnNRT2.1 nitrate transporter genes, confirming the allosteric property of the BnNPF6/NRT1.1 transporter, as reported in the literature between low and high nitrate concentrations. Moreover, several statistically significant power-law equations were found between variations in the shoots tryptophan concentrations (i.e., IAA precursor) with changes in the vapp and vout 15N fluxes as well as a synthetic parameter of plant N status estimated from the root/shoot ratio of total free amino acids concentrations. These relationships designate IAA as one of the major biological parameters related to metabolic and structural-morphological reorganization coupled with the N and water fluxes induced by nitrate. The results seriously challenge the scientific grounds of the concept of high- and low-affinity of nitrate transporters and are therefore discussed in terms of the ecological significance and physiological implications on the basis of recent agronomic, physiological and molecular data of the literature.

7.
Front Plant Sci ; 10: 1387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787993

RESUMO

Background and Aims: Although AVG (aminoethoxyvinylglycine) is intensely used to decipher signaling in ethylene/indol-3-acetic acid (IAA) interactions on root morphogenesis, AVG is not a specific inhibitor of aminocyclopropane-1-carboxylate synthase (ACS) and tryptophan aminotransferase (TAA) and tryptophan aminotransferase related (TAR) activities since it is able to inhibit several aminotransferases involved in N metabolism. Indeed, 1 mM glutamate (Glu) supply to the roots in plants treated with 10 µM AVG partially restores the root growth. Here, we highlight the changes induced by AVG and AVG + Glu treatments on the N metabolism impairment and root morphogenetic program. Methods: Root nitrate uptake induced by AVG and AVG + Glu treatments was measured by a differential labeling with 15NO3 - and 15Nglutamate. In parallel a profiling of amino acids (AA) was performed to decipher the impairment of AA metabolism. Key Results: 10 µM AVG treatment increases K15NO3 uptake and 15N translocation during root growth inhibition whereas 10 µM AVG + 1 mM 15Nglutamate treatment inhibits K15NO3 uptake and increases 15Nglutamate uptake during partial root growth restoration. This is explained by a nitrogen (N) limitation condition induced by AVG treatment and a N excess condition induced by AVG + Glu treatment. AA levels were mainly impaired by AVG treatment in roots, where levels of Ser, Thr, α-Ala, ß-Ala, Val, Asn and His were significantly increased. His was the only amino acid for which no restoration was observed in roots and shoots after glutamate treatment suggesting important control of His homeostasis on aminotransferase network. Results were discussed in light of recent findings on the interconnection between His homeostasis and the general amino acid control system (GAAC) in eukaryotes. Conclusions: These results demonstrate that AVG concentration above 5 µM is a powerful pharmacological tool for unraveling the involvement of GAAC system or new N sensory system in morphological and metabolic changes of the roots in leguminous and non-leguminous plants.

8.
Front Plant Sci ; 9: 1751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559754

RESUMO

Background and Aims: Understanding interactions between water and nitrate fluxes in response to nitrate availability and transpiration rate is crucial to select more efficient plants for the use of water and nitrate. Methods: Some of these interactions were investigated in intact Brassica napus plants by combining a non-destructive gravimetric device with 15NO3 - labeling. The set-up allowed high-resolution measurement of the effects of a cross-combination of two concentrations of KNO3 or KCl (0.5 and 5 mM) with two different rates of transpiration controlled by the relative humidity during a day-night cycle. Key Results: Results show that (1) high external nitrate concentrations increased root water uptake significantly whatever the transpiration rate, (2) nitrate translocation depended both on the rate of nitrate uptake and loading into xylem (3) dilution-concentration effect of nitrate in the xylem was mainly modulated by both external nitrate availability and transpiration rate, (4) dynamic changes in 15N translocation in the xylem modified shoot growth and capacitance, and (5) variations in tissue concentrations of NO3 - induced by the experimental conditions were balanced by changes in concentrations of chloride and sulfate ions. These effects were even more amplified under low transpiration condition and 0.5 mM external nitrate concentration. Conclusion: Taken together, these results highlight the fine and rapid adjustment of anion contents, nitrate and water flows to changes in transpiration rate and nitrate availability during a day-night cycle. The use of this non-invasive gravimetric device is therefore a powerful tool to assess candidates genes involved in nitrogen and water use efficiency.

9.
Front Physiol ; 7: 243, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445836

RESUMO

The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (V[Formula: see text] and K[Formula: see text], apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical expressions and numerical solution for root nutrient uptake.

10.
Eur J Cell Biol ; 83(5): 205-12, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15346810

RESUMO

To study molecules secreted from cultured plant cells that promote development, maize microspores were transferred into culture and the conditioned media were collected over time and analysed. Electrophoresis indicated that both non-glycosylated and glycosylated proteins including arabinogalactan proteins (AGPs) appeared in the medium and their concentration increased during the time of culture. The development of embryos was correlated with the presence of specific extracellular proteins, using an experimental system based on a tunicamycin inhibition test. In addition, a precise protein analysis was conducted using MALDI-TOF and ESI-MS-MS techniques. These approaches have allowed the identification of 5 other types of proteins: a cell wall invertase, two thaumatin isoforms, one 1-3 beta-glucanase and two chitinase isoforms. Altogether these experiments and results open ways for research aimed at understanding which molecules stimulate embryo formation. Moreover, AGPs may be used to stimulate the development of microspores (pollen embryogenesis) prepared from non-responsive genotypes.


Assuntos
Mucoproteínas/metabolismo , Floroglucinol/análogos & derivados , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Zea mays/metabolismo , Meios de Cultivo Condicionados , Glucosídeos , Mucoproteínas/análise , Mucoproteínas/imunologia , Proteínas de Plantas/química , Sementes/embriologia , Sementes/crescimento & desenvolvimento , Coloração e Rotulagem , Técnicas de Cultura de Tecidos , Zea mays/embriologia
11.
Plant Signal Behav ; 8(2): e22904, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299418

RESUMO

In plants, the nitrate transporters, NRT1.1 and NRT2.1, are mainly responsible for nitrate uptake. Intriguingly, both nitrate transporters are located in a complementary manner in different cells layers of the mature root suggesting that their coordination should occur during nitrate uptake and plant growth. This hypothesis was examined on 5-d-old rape seedlings grown on agar medium supplemented with 1 or 5mM nitrate. Seedlings were treated with increasing potassium glutamate concentrations in order to uncouple the two nitrate transporters by inhibiting BnNRT2.1 expression and activity specifically. In both nitrate treatments, increasing the glutamate concentrations from 0.5 to 10mM induced a reduction in (15)NO 3(-) uptake and an inhibition of N assimilation. The decrease in (15)NO 3(-) uptake was caused by downregulation of BnNRT2.1 expression but surprisingly it was not compensated by the upregulation of BnNRT1.1. This created an unprecedented physiological situation where the effects of the nitrate signal on shoot growth were solely modulated by nitrate absorption. In these conditions, the osmotic water flow for volumetric shoot growth was mainly dependent on active nitrate transport and nitrate signaling. This behavior was confirmed by the allometric relationships found between changes in the root length with (15)N and water accumulation in the shoot. These findings demonstrate that the BnNRT2.1 transporter is essential for nitrate uptake and growth, and renew the question of the respective roles of the NRT2.1 and NRT1.1 transporters in nitrate uptake and sensing at the whole plant level.


Assuntos
Ácido Glutâmico/farmacologia , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico/efeitos dos fármacos , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
12.
Plant Signal Behav ; 8(2): e22902, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299417

RESUMO

We analyzed how changes in BnNrt nitrate transporter gene expression induced by nitrate are associated with morphological changes in plantlets and osmotic water flow for growth. We hypothesized that in a Petri dish system, reduction in transpiration should induce conditions where nitrate and water fluxes for growth depend directly on nitrate transporter activity and nitrate signaling. Rape seedlings growing on agar plates were supplied with increasing external K (15)NO 3 concentrations from 0.05 to 20 mM. After 5 d of treatment, morphological switches in plantlet growth were observed between 0.5 and 5 mM nitrate supply. Root elongation was reduced by 50% while the cotyledon surface area was doubled. These morphological switches were strongly associated with increases in (15)NO 3(-) and water uptake rates as well as (15)N and water allocation to the shoot. These switches were also highly correlated with the upregulation of BnNrt1.1 and BnNrt2.1 in the root. However, while root expression of BnNrt2.1 was correlated linearly with a shoot growth-associated increase in (15)N and water uptake, BnNrt1.1 expression was correlated exponentially with both (15)N and water accumulation. In low transpiring conditions, the tight control exercised by nitrate transporters on K (15)NO 3 uptake and allocation clearly demonstrates that they modulated the nitrate-signaling cascade involved in cell growth and as a consequence, water uptake and allocation to the growing organs. Deciphering this signaling cascade in relation to acid growth theory seems to be the most important challenge for our understanding of the nitrate-signaling role in plant growth.


Assuntos
Transporte Biológico/fisiologia , Brassica napus/metabolismo , Nitratos/metabolismo , Transpiração Vegetal/fisiologia , Água/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/metabolismo
13.
Plant Signal Behav ; 4(1): 44-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19704705

RESUMO

Ethylene plays a key role in the elongation of exploratory and root hair systems in plants, as demonstrated by pharmacological modulation of the activity of ethylene biosynthesis enzymes: ACC synthase (ACS) and ACC oxidase (ACO). Thus, treatments with high concentrations (10 microM) of aminoethoxyvinylglycine (AVG, inhibitor of ACS) and 1-aminocyclopropane carboxylic acid (ACC, ethylene precursor, ACO activator) severely decrease the elongation of the exploratory root system but induce opposite effects on the root hair system: root hair length and numbers were increased in seedlings treated with ACC, whereas they were reduced in seedlings treated with AVG. Until now, such elongation changes of root architecture had not been questioned in terms of nitrate uptake. In the march issue of Plant Physiology we report that N uptake and nitrate transporter BnNrt2.1 transcript level were markedly reduced in ACC treated seedlings, but were increased in AVG treated seedlings compared to the control.1 Because recent studies have revealed that ethylene can also modulate stomatal opening as well as root hair cell elongation, we have examined whether pharmacological modulation of ethylene biosynthesis could affect, in an integrated manner, and at a whole-plant level, the exploratory and root hair systems, through changes of stomatal conductance and water allocation between the root and shoot.

14.
Plant Physiol ; 146(4): 1928-40, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18287493

RESUMO

Ethylene is a plant hormone that plays a major role in the elongation of both exploratory and root hair systems. Here, we demonstrate in Brassica napus seedlings that treatments with the ethylene precursor, aminocyclopropane carboxylic acid (ACC) and the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), cause modification of the dynamic processes of primary root and root hair elongation in a dose-dependent way. Moreover, restoration of root elongation in AVG-treated seedlings by 1 mm l-glutamate suggested that high concentrations of AVG affect root elongation through nonoverlapping ethylene metabolic pathway involving pyridoxal 5'-P-dependent enzymes of nitrate (N) metabolism. In this respect, treatments with high concentrations of ACC and AVG (10 mum) over 5 d revealed significant differences in relationships between root growth architecture and N uptake capacities. Indeed, if these treatments decreased severely the elongation of the exploratory root system (primary root and lateral roots) they had opposing effects on the root hair system. Although ACC increased the length and number of root hairs, the rate of N uptake and the transcript level of the N transporter BnNrt2.1 were markedly reduced. In contrast, the decrease in root hair length and number in AVG-treated seedlings was overcompensated by an increase of N uptake and BnNrt2.1 gene expression. These root architectural changes demonstrated that BnNrt2.1 expression levels were more correlated to the changes of the exploratory root system than the changes of the root hair system. The difference between treatments in N transporters BnNrt1.1 and BnNrt2.1 gene expression is discussed with regard to presumed transport functions of BnNrt1.1 in relation to root elongation.


Assuntos
Aminoácidos Cíclicos/farmacologia , Brassica napus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glicina/análogos & derivados , Raízes de Plantas/efeitos dos fármacos , Brassica napus/metabolismo , Relação Dose-Resposta a Droga , Glicina/farmacologia , Dados de Sequência Molecular , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Plant Physiol ; 134(1): 388-400, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14671012

RESUMO

The use of kinetic equations of NO3- transport systems in oilseed rape (Brassica napus), determined by 15NO3- labeling under controlled conditions, combined with experimental field data from the INRA-Châlons rape database were used to model NO3- uptake during the plant growth cycle. The quantitative effects of different factors such as day/night cycle, ontogenetic stages, root temperature, photosynthetically active radiation, and soil nitrate availability on different components of the constitutive high-affinity transport systems, constitutive low-affinity transport systems, inducible low-affinity transport systems, and inducible high-affinity transport systems of nitrate were then determined to improve the model's predictions. Simulated uptake correlated well with measured values of nitrogen (N) uptake under field conditions for all N fertilization rates tested. Model outputs showed that the high-affinity transport system accounted for about 89% of total NO3- uptake (18% and 71% for constitutive high-affinity transport systems and inducible high-affinity transport systems, respectively) when no fertilizer was applied. The low-affinity transport system accounted for a minor proportion of total N uptake, and its activity was restricted to the early phase of the growth cycle. However, N fertilization in spring increased the duration of its contribution to total N uptake. Overall, data show that this mechanistic and environmentally regulated approach is a powerful means to simulate total N uptake in the field with the advantage of taking both physiologically regulated processes at the overall plant level and specific nitrate transport system characteristics into account.


Assuntos
Brassica napus/metabolismo , Nitrogênio/metabolismo , Transporte Biológico Ativo , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Meio Ambiente , Cinética , Modelos Biológicos , Nitratos/metabolismo , Fotoperíodo , Raízes de Plantas/metabolismo
16.
Plant J ; 38(3): 421-31, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15086803

RESUMO

Two bursts of H(2)O(2) production have been detected by in situ 3,3'-diaminobenzidine (DAB) staining after cutting of Lolium perenne L. leaf blades. The first burst, which occurred immediately after wounding was inhibited by Na-diethydithiocarbamate (DIECA), a Cu/Zn-superoxide dismutase (SOD) inhibitor. The second burst, which was initiated several hours later, coincided with the induction of oxalate oxidase (G-OXO) activity detected in vitro or visualized in situ by the alpha-chloronaphtol assay. Four genes encoding G-OXO have been identified from cDNA obtained from wounded L. perenne L. leaf blades. Comparison of protein sequences revealed more than 91% homology in the coding region between G-OXOs of the true cereals and G-OXOs of ryegrass, which is a Gramineae belonging to the tribe of Festucaceae. The wound-dependent increase of G-OXO activity in floated cut leaf blades was the result of differential induction of the four g-oxo genes. The involvement of G-OXOs in wound-induced H(2)O(2) production coincided with the presence in leaf tissues of oxalate throughout the period of increase of G-OXO synthesis. Moreover, expression of g-oxo genes was enhanced by an exogenous supply of H(2)O(2) or methyljasmonate (MeJa). Expression of the four g-oxo genes was also induced after in planta stinging of leaf blades. The pattern of their expression in planta was identical to that occuring in senescing leaf sheaths. These results emphasize the importance of G-OXOs in H(2)O(2) production in oxalate-producing plant species such as ryegrass. G-OXOs might be crucial during critical events in the life of plants such as cutting and senescence by initiating H(2)O(2)-mediated defences against pathogens and foraging animals.


Assuntos
Glicoproteínas/genética , Lolium/genética , Oxirredutases/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Respiração Celular/genética , Respiração Celular/fisiologia , Senescência Celular/genética , Senescência Celular/fisiologia , Glicoproteínas/metabolismo , Lolium/metabolismo , Dados de Sequência Molecular , Oxirredutases/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homologia de Sequência de Aminoácidos , Estresse Mecânico
17.
J Exp Bot ; 53(375): 1711-21, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12147721

RESUMO

A de-repression mechanism based on the disappearance of 'signals' down-regulating N transporter activity has been proposed in the literature to explain the transient increase of NO(3)(-) uptake by the roots following N deprivation in higher plants. This hypothesis was investigated at the physiological and molecular levels by measuring NO(3)(-) influx into roots of Brassica napus L. grown under low or high external concentrations of KNO(3) following N deprivation. Parallel measurements were made of endogenous NO(3)(-), amino acid concentrations and abundance of mRNA for BnNRT1 and BnNRT2, genes encoding nitrate-inducible transport proteins. The effect of NO(3)(-) pulsing on NO(3)(-) transport components in N-deprived plants was also investigated by measuring influx of high- and low-affinity transport system (HATS and LATS) and assaying mRNA levels. Influx of NO(3)(-) via HATS and LATS, and transcript levels of BnNRT2 and BnNRT1 decreased with the duration of N deprivation. The results suggested that the absence of de-repression of NO(3)(-) influx and BnNRT2 gene expression following N starvation was related to a high amino acid status. Pulsing with NO(3)(-) induced a large increase in BnNRT2 mRNA level, but a comparatively small increase in NO(3)(-) influx via HATS. The level of BnNRT1 mRNA also increased, but there was no effect on LATS uptake activity. The absence of a strict correlation between the NO(3)(-) transport activity and the mRNA BnNRT1 and BnNRT2 levels is discussed in terms of possible post-transcriptional regulation by the amino acids.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Nitratos/farmacologia , Nitrogênio/deficiência , Proteínas de Plantas , Aminoácidos/metabolismo , Proteínas de Transporte de Ânions/efeitos dos fármacos , Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Transporte Biológico Ativo/efeitos dos fármacos , Northern Blotting , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Cinética , Transportadores de Nitrato , Nitratos/metabolismo , Nitrogênio/farmacologia , Isótopos de Nitrogênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA