Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Lett ; 7(6): 811-3, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21849308

RESUMO

Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats.


Assuntos
Atividade Motora , Percepção Olfatória , Perciformes/fisiologia , Percepção Visual , Poluentes Químicos da Água/química , Animais , Sinais (Psicologia) , Ciprinodontiformes/fisiologia , Feminino , Cadeia Alimentar , Poluentes Químicos da Água/análise , Qualidade da Água
2.
PLoS One ; 13(12): e0208010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550568

RESUMO

Trichodesmium, a filamentous bloom-forming marine cyanobacterium, plays a key role in the biogeochemistry of oligotrophic ocean regions because of the ability to fix nitrogen. Naturally occurring in the Great Barrier Reef (GBR), the contribution of Trichodesmium to the nutrient budget may be of the same order as that entering the system via catchment runoff. However, the cyclicity of Trichodesmium in the GBR is poorly understood and sparsely documented because of the lack of sufficient observations. This study provides the first systematic analysis of Trichodesmium spatial and temporal occurrences in the GBR over the decade-long MERIS ocean color mission (2002-2012). Trichodesmium surface expressions were detected using the Maximum Chlorophyll Index (MCI) applied to MERIS satellite imagery of the GBR lagoonal waters. The MCI performed well (76%), albeit tested on a limited set of images (N = 25) coincident with field measurements. A north (Cape York) to south (Fitzroy) increase in the extent, frequency and timing of the surface expressions characterized the GBR, with surface expressions extending over several hundreds of kilometers. The two southernmost subregions Mackay and Fitzroy accounted for the most (70%) bloom events. The bloom timing of Trichodesmium varied from May in the north to November in the south, with wet season conditions less favorable to Trichodesmium aggregations. MODIS-Aqua Sea Surface Temperature (SST) datasets, wind speed and field measurements of nutrient concentrations were used in combination with MCI positive instances to assess the blooms' driving factors. Low wind speed (<6 m.s-1) and SST > 24°C were associated with the largest surface aggregations. Generalized additive models (GAM) indicated an increase in bloom occurrences over the 10-year period with seasonal bloom patterns regionally distinct. Interannual variability in SST partially (14%) explained bloom occurrences, and other drivers, such as the subregion and the nutrient budget, likely regulate Trichodesmium surface aggregations in the GBR.


Assuntos
Recifes de Corais , Eutrofização , Fitoplâncton/fisiologia , Estações do Ano , Trichodesmium/fisiologia , Austrália , Clorofila/análise , Conjuntos de Dados como Assunto , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Fitoplâncton/química , Temperatura , Trichodesmium/química , Vento
3.
PLoS One ; 8(7): e70400, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894649

RESUMO

Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.


Assuntos
Recifes de Corais , Análise de Variância , Mudança Climática , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA