Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 169: 104651, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828369

RESUMO

The entomotoxic potential of Manilkara rufula crude extract (CEMR) and its aqueous (AFMR) and methanolic (MFMR) fractions were evaluated against Nauphoeta cinerea cockroaches. The results point out to a direct modulation of octopaminergic and cholinergic pathways in insect nervous system. CEMR induced an anti-acetylcholinesterase (AChE) effect in cockroach brain homogenates. CEMR significantly decreased the cockroach heart rate in semi-isolated heart preparations. CEMR also caused a broad disturbance in the insect behavior by reducing the exploratory activity. The decreased antennae and leg grooming activities, by different doses of CEMR, mimicked those of phentolamine activity, a selective octopaminergic receptor antagonist. The lethargy induced by CEMR was accompanied by neuromuscular failure and by a decrease of sensilla spontaneous neural compound action potentials (SNCAP) firing in in vivo and ex vivo cockroach muscle-nerve preparations, respectively. AFMR was more effective in promoting neuromuscular paralysis than its methanolic counterpart, in the same dose. These data validate the entomotoxic activity of M. rufula. The phentolamine-like modulation induced in cockroaches is the result of a potential direct inhibition of octopaminergic receptors, combined to an anti-AChE activity. In addition, the modulation of CEMR on octopaminergic and cholinergic pathways is probably the result of a synergism between AFMR and MFMR chemical compounds. Further phytochemical investigation followed by a bio-guiding protocol will improve the molecular aspects of M. rufula pharmacology and toxicology to insects.


Assuntos
Baratas , Manilkara , Acetilcolinesterase , Animais , Colinérgicos , Árvores
2.
Mar Drugs ; 17(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658661

RESUMO

Prasiola crispa is a macroscopic green algae found in abundance in Antarctica ice free areas. Prasiola crispan-hexaneextract (HPC) induced insecticidal activity in Nauphoeta cinerea cockroaches after 24 h of exposure. The chemical analysis of HPC revealed the presence of the followingphytosterols: ß-sitosterol, campesterol and stigmasterol. The incubation of cockroach semi-isolated heart preparations with HPC caused a significant negative chronotropic activity in the heartbeats. HPC affected the insect neuromuscular function by inducing a complete inhibition of the cockroach leg-muscle twitch tension. When the isolated phytosterols were injected at in vivo cockroach neuromuscular preparations, there was a progressive inhibition of muscle twitches on the following order of potency: ß-sitosterol > campesterol > stigmasterol. HPC also provoked significant behavioral alterations, characterized by the increase or decrease of cockroach grooming activity, depending on the dose assayed. Altogether, the results presented here corroborate the insecticide potential of Prasiola crispa Antarctic algae. They also revealed the presence of phytosterols and the involvement of these steroidal compounds in the entomotoxic activity of the algae, potentially by modulating octopaminergic-cholinergic pathways. Further phytochemical-combined bioguided analysis of the HPC will unveil novel bioactive compounds that might be an accessory to the insecticide activity of the algae.


Assuntos
Clorófitas/química , Baratas , Inseticidas/química , Fitosteróis/análise , Extratos Vegetais/química , Animais , Regiões Antárticas , Hexanos/química , Inseticidas/isolamento & purificação , Dose Letal Mediana , Extratos Vegetais/isolamento & purificação
3.
Ecotoxicol Environ Saf ; 171: 138-145, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30599431

RESUMO

The detection of cyanotoxins, such as the anatoxin-a(s), is essential to ensure the biological safety of water environments. Here, we propose the use of Nauphoeta cinerea cockroaches as an alternative biological model for the biomonitoring of the activity of anatoxin-a(s) in aquatic systems. In order to validate our proposed model, we compared the effects of a cyanobacterial extract containing anatoxin-a(s) (CECA) with those of the organophosphate trichlorfon (Tn) on biochemical and physiological parameters of the nervous system of Nauphoeta cinerea cockroaches. In brain homogenates from cockroaches, CECA (5 and 50 µg/g) inhibited acetylcholinesterase (AChE) activity by 53 ±â€¯2% and 51 ±â€¯7%, respectively, while Tn (5 and 50 µg/g) inhibited AChE activity by 35 ±â€¯4% and 80 ±â€¯9%, respectively (p < 0.05; n = 6). Moreover, CECA at concentrations of 5, 25, and 50 µg/g decreased the locomotor activity of the cockroaches, diminishing the distance travelled and increasing the frequency and duration of immobile episodes similarly to Tn (0.3 µg/g) (p < 0.05, n = 40, respectively). CECA (5, 25 and 50 µg/g) induced an increase in the leg grooming behavior, but not in the movement of antennae, similarly to the effect of Tn (0.3 µg/g). In addition, both CECA (50 µg/200 µl) and Tn (0.3 µg/200 µl) induced a negative chronotropism in the insect heart (37 ±â€¯1 and 47 ±â€¯8 beats/min in 30 min, respectively) (n = 9, p > 0.05). Finally, CECA (50 µg/g), Tn (0.3 µg/g) and neostigmine (50 µg/g) caused significant neuromuscular failure, as indicated by the monitoring of the in vivo neuromuscular function of the cockroaches, during 100 min (n = 6, p < 0.05, respectively). In conclusion, sublethal doses of CECA provoked entomotoxicity. The Tn-like effects of CECA on Nauphoeta cinerea cockroaches encompass both the central and peripheral nervous systems in our insect model. The inhibitory activity of CECA on AChE boosts a cascade of signaling events involving octopaminergic/dopaminergic neurotransmission. Therefore, this study indicates that this insect model could potentially be used as a powerful, practical, and inexpensive tool to understand the impacts of eutrophication and for orientating decontamination processes.


Assuntos
Inibidores da Colinesterase/toxicidade , Baratas/efeitos dos fármacos , Cianobactérias/química , Inseticidas/toxicidade , Neurotoxinas/toxicidade , Triclorfon/toxicidade , Tropanos/toxicidade , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Baratas/fisiologia , Toxinas de Cianobactérias , Feminino , Locomoção/efeitos dos fármacos , Masculino , Transmissão Sináptica/efeitos dos fármacos
4.
Pestic Biochem Physiol ; 148: 175-181, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891370

RESUMO

Rhinella icterica is a poisonous toad whose toxic secretion has never been studied against entomotoxic potential. Sublethal doses of Rhinella icterica toxic secretion (RITS) were assayed in Nauphoeta cinerea cockroaches, in order to understand the physiological and behavioral parameters, over the insect central and peripheral nervous system. RITS (10 µg/g) injections, induced behavioral impairment as evidenced by a significant decrease (38 ±â€¯14%) in the distance traveled (p < .05), followed by an increase (90 ±â€¯6%) of immobile episodes (p < .001, n = 28, respectively). In cockroaches semi-isolated heart preparations, RITS (16 µg/200 µl) induced a significant irreversible dose-dependent negative chronotropism, reaching ~40% decrease in heart rate in 20 min incubation. In in vivo cockroach neuromuscular preparations, RITS (20, 50 and 100 µg/g of animal weight) induced a time-dependent inhibition of twitch tension that was complete for 20 µg/g, in 120 min recordings. RITS (10 µg/g) also induced a significant increase in the insect leg grooming activity (128 ±â€¯10%, n = 29, p < .01), but not in the antennae counterparts. The RITS increase in leg grooming activity was prevented in 90% by the pretreatment of cockroaches with phentolamine (0.1 µg/g). The electrophysiological recordings of spontaneous neural compound action potentials showed that RITS (20 µg/g) induced a significant increase in the number of events, as well as in the rise time and duration of the potentials. In conclusion, RITS showed to be entomotoxic, being the neuromuscular failure and cardiotoxic activity considered the main deleterious effects. The disturbance of the cockroaches' behavior together with the electrophysiological alterations, may unveil the presence of some toxic components present in the poison with inherent biotechnological potentials.


Assuntos
Bufonidae/fisiologia , Baratas/efeitos dos fármacos , Octopamina/farmacologia , Pele/metabolismo , Toxinas Biológicas/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Baratas/metabolismo , Relação Dose-Resposta a Droga , Asseio Animal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Junção Neuromuscular/efeitos dos fármacos , Octopamina/metabolismo , Fentolamina/farmacologia , Toxinas Biológicas/metabolismo
6.
Toxicon ; 210: 115-122, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35202645

RESUMO

Amphibians represent one of the main natural sources of bioactive molecules of interest to biotechnological research. The Phyllomedusidae family has several species occurring in Brazil and some studies demonstrate the biological potential of poisons of these species, however many still need to be characterized. Phyllomedusa iheringii is endemic in Brazilian and Uruguayan Pampa Biome and has little data in the literature regarding the action of its poison on experimental organisms. Thus, the present work evaluates the biological activity of P. iheringii secretion on the central and peripheral nervous system of a vertebrate model. The skin secretions of P. iheringii (SSPI) were collected through manual compression and electrical stimulation of the animal's bodies. The resulting content was used in neurobiological tests searching for modulatory effects on the main pathways involved in the neurotoxicity mechanism of vertebrates. SSPI affected the contraction force of the chick biventer cervicis muscle (Gallus gallus domesticus) at some concentrations used (5, 10, and 12 µg/mL). In slices from the cerebral cortex of G. gallus domesticus an increase in cell viability was observed after treatment with SSPI (10 µg/mL) and a neuroprotective effect when treated simultaneously with hydrogen peroxide (H2O2), Neostigmine (NEO) and Trichlorfon (TRI). The cholinergic pathway is possibly the main pathway modulated by SSPI since assays with the cerebral cortex and biventer cervicis muscle demonstrated the increased activity of the enzyme acetylcholinesterase (AChE) (SSPI 10 µg/mL and 12 µg/mL, respectively). SSPI (10 µg/mL) also prevented the modulation of NEO and TRI, two recognized anticholinesterase agents, in AChE activity in slices of the cerebral cortex. Therefore, our results have demonstrated the unpublished biotechnological potential of P. iheringii over the vertebrate model and its modulation on the nervous system, with apparent action on the cholinergic pathway.


Assuntos
Acetilcolinesterase , Peróxido de Hidrogênio , Acetilcolinesterase/metabolismo , Animais , Anuros/metabolismo , Colinérgicos , Músculos/metabolismo
7.
J Insect Physiol ; 129: 104192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460706

RESUMO

Rhinella icterica is a Brazilian toad with a parotoid secretion that is toxic to insects. In this work, we examined the entomotoxicity of this secretion in locust (Locusta migratoria) semi-isolated heart and oviduct preparations in vitro. The parotoid secretion caused negative chronotropism in semi-isolated heart preparations (at the highest dose tested: 500 µg) and markedly enhanced the amplitude of spontaneous contractions and tonus of oviduct muscle (0.001-100 µg). In addition, the secretion enhanced neurally-evoked contractions of oviduct muscle, which was more sensitive to low concentrations of secretion than the semi-isolated heart. The highest dose of secretion (100 µg) caused neuromuscular blockade. In zero calcium-high magnesium saline, the secretion still enhanced muscle tonus, suggesting the release of intracellular calcium to stimulate contraction. Reverse-phase HPLC of the secretion yielded eight fractions, of which only fractions 4 and 5 affected oviduct muscle tonus and neurally-evoked contractions. No phospholipase A2 activity was detected in the secretion or its chromatographic fractions. The analysis of fractions 4 and 5 by LC-DAD-MS/MS revealed the following chemical compounds: suberoyl arginine, hellebrigenin, hellebrigenin 3-suberoyl arginine ester, marinobufagin 3-pimeloyl arginine ester, telocinobufagin 3-suberoyl arginine ester, marinobufagin 3-suberoyl arginine ester, bufalin 3-adipoyl arginine, marinobufagin, bufotalinin, and bufalitoxin. These findings indicate that R. icterica parotoid secretion is active in both of the preparations examined, with the activity in oviduct possibly being mediated by bufadienolides.


Assuntos
Bufanolídeos , Bufonidae/metabolismo , Locusta migratoria/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Animais , Bufanolídeos/química , Bufanolídeos/toxicidade , Cromatografia Líquida de Alta Pressão , Feminino , Coração/efeitos dos fármacos , Oviductos/efeitos dos fármacos , Espectrometria de Massas em Tandem
8.
Toxins (Basel) ; 12(6)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549266

RESUMO

The biological activity of Rhinella icterica parotoid secretion (RIPS) and some of its chromatographic fractions (RI18, RI19, RI23, and RI24) was evaluated in the current study. Mass spectrometry of these fractions indicated the presence of sarmentogenin, argentinogenin, (5ß,12ß)-12,14-dihydroxy-11-oxobufa-3,20,22-trienolide, marinobufagin, bufogenin B, 11α,19-dihydroxy-telocinobufagin, bufotalin, monohydroxylbufotalin, 19-oxo-cinobufagin, 3α,12ß,25,26-tetrahydroxy-7-oxo-5ß-cholestane-26-O-sulfate, and cinobufagin-3-hemisuberate that were identified as alkaloid and steroid compounds, in addition to marinoic acid and N-methyl-5-hydroxy-tryptamine. In chick brain slices, all fractions caused a slight decrease in cell viability, as also seen with the highest concentration of RIPS tested. In chick biventer cervicis neuromuscular preparations, RIPS and all four fractions significantly inhibited junctional acetylcholinesterase (AChE) activity. In this preparation, only fraction RI23 completely mimicked the pharmacological profile of RIPS, which included a transient facilitation in the amplitude of muscle twitches followed by progressive and complete neuromuscular blockade. Mass spectrometric analysis showed that RI23 consisted predominantly of bufogenins, a class of steroidal compounds known for their cardiotonic activity mediated by a digoxin- or ouabain-like action and the blockade of voltage-dependent L-type calcium channels. These findings indicate that the pharmacological activities of RI23 (and RIPS) are probably mediated by: (1) inhibition of AChE activity that increases the junctional content of Ach; (2) inhibition of neuronal Na+/K+-ATPase, leading to facilitation followed by neuromuscular blockade; and (3) blockade of voltage-dependent Ca2+ channels, leading to stabilization of the motor endplate membrane.


Assuntos
Bufanolídeos/toxicidade , Bufonidae , Neurotoxinas/toxicidade , Glândula Parótida/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Bufanolídeos/isolamento & purificação , Bloqueadores dos Canais de Cálcio/isolamento & purificação , Bloqueadores dos Canais de Cálcio/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/toxicidade , Relação Dose-Resposta a Droga , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Neurotoxinas/isolamento & purificação , Via Secretória , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Toxins (Basel) ; 12(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019552

RESUMO

Rhinella schneideri is a common toad found in South America, whose paratoid toxic secretion has never been explored as an insecticide. In order to evaluate its insecticidal potential, Nauphoeta cinerea cockroaches were used as an experimental model in biochemical, physiological and behavioral procedures. Lethality assays with Rhinella schneideri paratoid secretion (RSPS) determined the LD50 value after 24 h (58.07µg/g) and 48 h exposure (44.07 µg/g) (R2 = 0.882 and 0.954, respectively). Acetylcholinesterase activity (AChE) after RSPS at its highest dose promoted an enzyme inhibition of 40%, a similar effect observed with neostigmine administration (p < 0.001, n= 5). Insect locomotion recordings revealed that RSPS decreased the distance traveled by up to 37% with a concomitant 85% increase in immobile episodes (p < 0.001, n = 36). RSPS added to in vivo cockroach semi-isolated heart preparation promoted an irreversible and dose dependent decrease in heart rate, showing a complete failure after 30 min recording (p < 0.001, n ≥ 6). In addition, RSPS into nerve-muscle preparations induced a dose-dependent neuromuscular blockade, reaching a total blockage at 70 min at the highest dose applied (p < 0.001, n ≥ 6). The effect of RSPS on spontaneous sensorial action potentials was characterized by an increase in the number of spikes 61% (p < 0.01). Meanwhile, there was 42% decrease in the mean area of those potentials (p < 0.05, n ≥ 6). The results obtained here highlight the potential insecticidal relevance of RSPS and its potential biotechnological application.


Assuntos
Venenos de Anfíbios/farmacologia , Bufo marinus/metabolismo , Inibidores da Colinesterase/farmacologia , Baratas/efeitos dos fármacos , Inseticidas/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Glândula Parótida/metabolismo , Acetilcolinesterase/metabolismo , Venenos de Anfíbios/metabolismo , Animais , Inibidores da Colinesterase/metabolismo , Baratas/enzimologia , Relação Dose-Resposta a Droga , Feminino , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Dose Letal Mediana , Locomoção/efeitos dos fármacos , Masculino , Junção Neuromuscular/enzimologia , Via Secretória
10.
Neurotoxicology ; 65: 264-271, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29174112

RESUMO

The biological activity of Rhinella icterica toxic secretion (RITS) was evaluated on chick neuromuscular junctions, rat heart́s tissue and mice hippocampal slices. At chick biventer cervicis preparation, RITS (5, 10 and 20µg/mL) produced a concentration-independent irreversible neuromuscular blockade, which was preceded by a transitory increase of muscle twitch tension with the lowest concentration, in 120min recordings. In this set of experiments, RITS incubation partially prevented the curare neuromuscular blockade. The assessment of chick biventer cervicis muscle acetylcholinesterase (AChE) in the presence of RITS showed a significant inhibition of the enzyme, similarly to neostigmine. The incubation of muscles with digoxin or ouabain mimicked the poison activity by increasing the amplitude of the twitches followed by a progressive depression of the muscle strength. In addition, RITS demonstrated a digitalic-like activity, by inhibiting significantly the cardiac Na+, K+-ATPase. When the central nervous system was accessed, RITS induced an increase in the cell viability, in the lowest concentration. In addition, the poison protected slices subject to oxygen/glucose deprivation. Altogether, these data indicate that the poisonous extract of R. icterica is able to interfere with peripheral and central neurotransmission, probably due to a direct interaction with AChE, calcium channels and Na+, K+-ATPase. A further investigation upon the poison toxic components will unveil the components involved in such a pharmacological activity and the potential biotechnological application of this poison.


Assuntos
Venenos de Anfíbios/toxicidade , Bufonidae , Hipocampo/efeitos dos fármacos , Miocárdio/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Inibidores da Colinesterase/toxicidade , Curare/antagonistas & inibidores , Curare/farmacologia , Digoxina/farmacologia , Relação Dose-Resposta a Droga , Isquemia/prevenção & controle , Masculino , Camundongos , Bloqueadores Neuromusculares/farmacologia , Junção Neuromuscular/metabolismo , Ouabaína/farmacologia , Ratos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA