Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467075

RESUMO

Recent clinical and epidemiological studies support the contention that diabetes mellitus (DM) is a strong risk factor for the development of Alzheimer's disease (AD). The use of insulin cell toxin, streptozotocin (STZ), when injected into the lateral ventricles, develops an insulin resistant brain state (IRBS) and represents a non-transgenic, or sporadic AD model (SAD), with several AD-like neuropathological features. The present study explored the effects of an anti-diabetic drug, liraglutide (LIR), in reversing major pathological hallmarks in the prodromal disease stage of both the 5xFAD transgenic and SAD mouse models of AD. Three-month-old 5xFAD and age-matched wild type mice were given a single intracerebroventricular (i.c.v) injection of STZ or vehicle (saline) and were subsequently treated with LIR, intraperitoneally (IP), once a day for 30 days. The extent of neurodegeneration, Aß plaque load, and key proteins associated with the insulin signaling pathways were measured using Western blot and neuroinflammation (via immunohistological assays) in the cortical and hippocampal regions of the brain were assessed following a series of behavioral tests used to measure cognitive function after LIR or vehicle treatments. Our results indicated that STZ significantly increased neuroinflammation, Aß plaque deposition and disrupted insulin signaling pathway, while 25 nmol/kg LIR, when injected IP, significantly decreased neuroinflammatory responses in both SAD and 5xFAD mice before significant cognitive changes were observed, suggesting LIR can reduce early neuropathology markers prior to the emergence of overt memory deficits. Our results indicate that LIR has neuroprotective effects and has the potential to serve as an anti-inflammatory and anti-amyloid prophylactic therapy in the prodromal stages of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Liraglutida/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Liraglutida/administração & dosagem , Liraglutida/farmacologia , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Presenilinas/genética , Estreptozocina/toxicidade
2.
J Korean Med Sci ; 34(46): e297, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31779058

RESUMO

Accumulated evidence suggests that sporadic cases of Alzheimer's disease (AD) make up more than 95% of total AD patients, and diabetes has been implicated as a strong risk factor for the development of AD. Diabetes shares pathological features of AD, such as impaired insulin signaling, increased oxidative stress, increased amyloid-beta (Aß) production, tauopathy and cerebrovascular complication. Due to shared pathologies between the two diseases, anti-diabetic drugs may be a suitable therapeutic option for AD treatment. In this article, we will discuss the well-known pathologies of AD, including Aß plaques and tau tangles, as well as other mechanisms shared in AD and diabetes including reactive glia and the breakdown of blood brain barrier in order to evaluate the presence of any potential, indirect or direct links of pre-diabetic conditions to AD pathology. In addition, clinical evidence of high incidence of diabetic patients to the development of AD are described together with application of anti-diabetic medications to AD patients.


Assuntos
Doença de Alzheimer/patologia , Diabetes Mellitus Tipo 2/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Transtornos Cerebrovasculares/complicações , Transtornos Cerebrovasculares/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Cloreto de Lítio/uso terapêutico , Pioglitazona/uso terapêutico
3.
Histochem Cell Biol ; 146(5): 609-625, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27406082

RESUMO

Deposition of amyloid beta protein (Aß) is a key component in the pathogenesis of Alzheimer's disease (AD). As an anti-amyloid natural polyphenol, curcumin (Cur) has been used as a therapy for AD. Its fluorescent activity, preferential binding to Aß, as well as structural similarities with other traditional amyloid-binding dyes, make it a promising candidate for labeling and imaging of Aß plaques in vivo. The present study was designed to test whether dietary Cur and nanocurcumin (NC) provide more sensitivity for labeling and imaging of Aß plaques in brain tissues from the 5×-familial AD (5×FAD) mice than the classical Aß-binding dyes, such as Congo red and Thioflavin-S. These comparisons were made in postmortem brain tissues from the 5×FAD mice. We observed that Cur and NC labeled Aß plaques to the same degree as Aß-specific antibody and to a greater extent than those of the classical amyloid-binding dyes. Cur and NC also labeled Aß plaques in 5×FAD brain tissues when injected intraperitoneally. Nanomolar concentrations of Cur or NC are sufficient for labeling and imaging of Aß plaques in 5×FAD brain tissue. Cur and NC also labeled different types of Aß plaques, including core, neuritic, diffuse, and burned-out, to a greater degree than other amyloid-binding dyes. Therefore, Cur and or NC can be used as an alternative to Aß-specific antibody for labeling and imaging of Aß plaques ex vivo and in vivo. It can provide an easy and inexpensive means of detecting Aß-plaque load in postmortem brain tissue of animal models of AD after anti-amyloid therapy.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/análise , Encéfalo/metabolismo , Corantes/administração & dosagem , Corantes/análise , Curcumina/administração & dosagem , Curcumina/análise , Placa Amiloide/metabolismo , Administração Oral , Peptídeos beta-Amiloides/química , Animais , Corantes/química , Curcumina/análogos & derivados , Curcumina/química , Dieta , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Nanoestruturas/administração & dosagem , Nanoestruturas/análise , Placa Amiloide/química , Solubilidade
4.
Neuroscience ; 385: 246-254, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29777753

RESUMO

Alzheimer's disease (AD) is defined by senile plaques, tauopathy and neuronal cell death in specific area of the brain. Recent studies suggest that neurovascular dysfunction may be an integral part of AD pathogenesis, contributing to the onset and development of AD pathologies such as neuronal death, inflammatory response, and breakdown of blood-brain barrier (BBB). In addition, vascular complications caused by age-related metabolic diseases such as diabetes and high blood pressure have high incidence in development of dementia and AD. We previously reported that astrocytes, essential components of BBB, were chronically activated and some deteriorated in the brain of 5xFAD, an amyloid precursor protein/presenilin1 (APP/PS1) transgenic mouse model. Thus, it is rational to investigate if any vascular dysfunction is associated with considerable activation of astrocytes in APP/PS1 mouse model. In this study, we observed that cerebrovascular pathology was associated with large scale of reactive astrocytes and neurodegeneration in an Aß plague-generating mouse model. Using 5xFAD mouse brains, we demonstrate damaged brain vessels and reduced expression of glucose transporter 1 (GLUT1), the main glucose transporter, and a tight junction protein zonula occludens-1 (ZO-1) of cerebrovascular endothelial cells. This vascular pathology was closely associated with astrocytic deterioration and neuronal loss due to buildup of Aß plaques in 5xFAD mouse brains.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Degeneração Neural/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Degeneração Neural/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo
5.
Neuroreport ; 26(14): 862-9, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26302161

RESUMO

In cerebral ischemia, studies of cell death have focused primarily on neurons, but recent work indicates that ischemia also causes damage to astrocytes. Activation of astrocytes is a typical brain response to stress stimuli and is evidenced by changes in cellular function and morphology, as well as upregulation of glial fibrillary acidic protein. The tumor-suppressor transcription factor p53 has recently been implicated as a mediator of ischemia-induced neuronal death, but very little is known about its role in the activation or the death of astrocytes. The present study investigated the role of p53 in astrocyte and neuronal toxicity using in-vitro and in-vivo ischemic stroke models. We showed that p53 is activated in ischemic brains and in oxygen-glucose deprivation (OGD)-induced cell death in neurons and astrocytes. Inhibition of p53 activity using either pifithrin-α or small interference RNA interference reduced OGD-induced cell death and pifithrin-α reversed OGD-induced impairment of glutamate uptake in astrocytes, suggesting that p53 might play a key role in mediating neurotoxicity and gliotoxicity in ischemic brain injury. This study shows that p53 is activated in astrocytes during ischemia and that inhibition of the activity of this molecule prevents not only OGD-induced neuronal and astrocytic death but also astrocyte activation and impaired glutamate uptake. These findings suggest that p53 may be a valuable therapeutic target in ischemic brain injury.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Hipóxia Celular , Neurônios/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Benzotiazóis/farmacologia , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Fármacos do Sistema Nervoso Central/farmacologia , Glucose/deficiência , Ácido Glutâmico/metabolismo , Infarto da Artéria Cerebral Média , Masculino , Neurônios/efeitos dos fármacos , Interferência de RNA , Ratos Sprague-Dawley , Estresse Fisiológico , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA