Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17056, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273542

RESUMO

Ecosystem functions and services are severely threatened by unprecedented global loss in biodiversity. To counteract these trends, it is essential to develop systems to monitor changes in biodiversity for planning, evaluating, and implementing conservation and mitigation actions. However, the implementation of monitoring systems suffers from a trade-off between grain (i.e., the level of detail), extent (i.e., the number of study sites), and temporal repetition. Here, we present an applied and realized networked sensor system for integrated biodiversity monitoring in the Nature 4.0 project as a solution to these challenges, which considers plants and animals not only as targets of investigation, but also as parts of the modular sensor network by carrying sensors. Our networked sensor system consists of three main closely interlinked components with a modular structure: sensors, data transmission, and data storage, which are integrated into pipelines for automated biodiversity monitoring. We present our own real-world examples of applications, share our experiences in operating them, and provide our collected open data. Our flexible, low-cost, and open-source solutions can be applied for monitoring individual and multiple terrestrial plants and animals as well as their interactions. Ultimately, our system can also be applied to area-wide ecosystem mapping tasks, thereby providing an exemplary cost-efficient and powerful solution for biodiversity monitoring. Building upon our experiences in the Nature 4.0 project, we identified ten key challenges that need to be addressed to better understand and counteract the ongoing loss of biodiversity using networked sensor systems. To tackle these challenges, interdisciplinary collaboration, additional research, and practical solutions are necessary to enhance the capability and applicability of networked sensor systems for researchers and practitioners, ultimately further helping to ensure the sustainable management of ecosystems and the provision of ecosystem services.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Plantas
2.
Plant Cell Environ ; 39(12): 2691-2700, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27569258

RESUMO

Here, we characterized nitrogen (N) uptake of beech (Fagus sylvatica) and their associated ectomycorrhizal (EM) communities from NH4+ and NO3- . We hypothesized that a proportional fraction of ectomycorrhizal N uptake is transferred to the host, thereby resulting in the same uptake patterns of plants and their associated mycorrhizal communities. 15 N uptake was studied under various field conditions after short-term and long-term exposure to a pulse of equimolar NH4+ and NO3- concentrations, where one compound was replaced by 15 N. In native EM assemblages, long-term and short-term 15 N uptake from NH4+ was higher than that from NO3- , regardless of season, water availability and site exposure, whereas in beech long-term 15 N uptake from NO3- was higher than that from NH4+ . The transfer rates from the EM to beech were lower for 15 N from NH4+ than from NO3- . 15 N content in EM was correlated with 15 N uptake of the host for 15 NH4+ , but not for 15 NO3- -derived N. These findings suggest stronger control of the EM assemblage on N provision to the host from NH4+ than from NO3- . Different host and EM accumulation patterns for inorganic N will result in complementary resource use, which might be advantageous in forest ecosystems with limited N availability.


Assuntos
Compostos de Amônio/metabolismo , Fagus/metabolismo , Micorrizas/metabolismo , Nitratos/metabolismo , Fagus/microbiologia , Água/metabolismo
3.
Appl Environ Microbiol ; 81(17): 5957-67, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092464

RESUMO

Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate.


Assuntos
Fagus/microbiologia , Fungos/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Fungos/genética , Fungos/isolamento & purificação , Dados de Sequência Molecular , Micorrizas/genética , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Microbiologia do Solo , Árvores/metabolismo
4.
Microb Ecol ; 69(4): 867-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25370887

RESUMO

Soil microbial community responses to elevated atmospheric CO2 concentrations (eCO2) occur mainly indirectly via CO2-induced plant growth stimulation leading to quantitative as well as qualitative changes in rhizodeposition and plant litter. In order to gain insight into short-term, site-specific effects of eCO2 on the microbial community structure at the plant-soil interface, young beech trees (Fagus sylvatica L.) from two opposing mountainous slopes with contrasting climatic conditions were incubated under ambient (360 ppm) CO2 concentrations in a greenhouse. One week before harvest, half of the trees were incubated for 2 days under eCO2 (1,100 ppm) conditions. Shifts in the microbial community structure in the adhering soil as well as in the root rhizosphere complex (RRC) were investigated via TRFLP and 454 pyrosequencing based on 16S ribosomal RNA (rRNA) genes. Multivariate analysis of the community profiles showed clear changes of microbial community structure between plants grown under ambient and elevated CO2 mainly in RRC. Both TRFLP and 454 pyrosequencing showed a significant decrease in the microbial diversity and evenness as a response of CO2 enrichment. While Alphaproteobacteria dominated by Rhizobiales decreased at eCO2, Betaproteobacteria, mainly Burkholderiales, remained unaffected. In contrast, Gammaproteobacteria and Deltaproteobacteria, predominated by Pseudomonadales and Myxococcales, respectively, increased at eCO2. Members of the order Actinomycetales increased, whereas within the phylum Acidobacteria subgroup Gp1 decreased, and the subgroups Gp4 and Gp6 increased under atmospheric CO2 enrichment. Moreover, Planctomycetes and Firmicutes, mainly members of Bacilli, increased under eCO2. Overall, the effect intensity of eCO2 on soil microbial communities was dependent on the distance to the roots. This effect was consistent for all trees under investigation; a site-specific effect of eCO2 in response to the origin of the trees was not observed.


Assuntos
Dióxido de Carbono/metabolismo , Fagus/metabolismo , Fagus/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Meio Ambiente , Alemanha , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição
5.
PLoS One ; 11(7): e0158823, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27410969

RESUMO

European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here specifically nitrification is vulnerable to reduced water availability, which can directly lead to nutritional limitations of beech seedlings. This tight link between reduced water availability, drought stress for nitrifiers, decreased gross nitrification rates and nitrate availability and finally nitrate uptake by beech seedlings could represent the Achilles' heel for beech under climate change stresses.


Assuntos
Amônia/metabolismo , Mudança Climática , Fagus/metabolismo , Ciclo do Nitrogênio/fisiologia , Nitrogênio/metabolismo , Árvores/metabolismo , Clima , Simulação por Computador , Secas , Europa (Continente) , Florestas , Temperatura Alta , Micorrizas/crescimento & desenvolvimento , Oxirredução , Oxirredutases/genética , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA