Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Stereotact Funct Neurosurg ; 100(5-6): 275-281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446334

RESUMO

Posterior hypothalamic-deep brain stimulation (pHyp-DBS) has been reported as a successful treatment for reducing refractory aggressive behaviors in patients with distinct primary diagnoses. Here, we report on a patient with cri du chat syndrome presenting severe self-injury and aggressive behaviors toward others, who was treated with pHyp-DBS. Positive results were observed at long-term follow-up in aggressive behavior and quality of life. Intraoperative microdialysis and imaging connectomics analysis were performed to investigate possible mechanisms of action. Our results suggest the involvement of limbic and motor areas and alterations in main neurotransmitter levels in the targeted area that are associated with positive results following treatment.


Assuntos
Conectoma , Síndrome de Cri-du-Chat , Estimulação Encefálica Profunda , Humanos , Síndrome de Cri-du-Chat/complicações , Seguimentos , Estimulação Encefálica Profunda/métodos , Qualidade de Vida , Microdiálise
2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292973

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the gold-standard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Animais , Ratos , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Oxidopamina , Inflamassomos/metabolismo , Eletrodos , Glutamatos , Inflamação/terapia , Citocinas/metabolismo , Sistemas de Transporte de Aminoácidos , Ácido gama-Aminobutírico
3.
Epilepsy Behav ; 105: 106945, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32109856

RESUMO

The tremor mutant phenotype results from an autosomal recessive spontaneous mutation arisen in a Swiss-Webster mouse colony. The mutant mice displayed normal development until three weeks of age when they began to present motor impairment comprised by whole body tremor, ataxia, and decreased exploratory behavior. These features increased in severity with aging suggesting a neurodegenerative profile. In parallel, they showed audiogenic generalized clonic seizures. Results from genetic mapping identified the mutation tremor on chromosome 14, in an interval of 5 cM between D14Mit37 (33.21 cM) and D14Mit115 (38.21 cM), making Early Growth Response 3 (Egr3) the main candidate gene. Comparing with wild type (WT) mice, the tremor mice showed higher hippocampal gene expression of Egr3 and Gabra1 and increased concentrations of noradrenalin (NOR; p = .0012), serotonin (5HT; p = .0083), 5-hydroxyindoleacetic acid (5-HIAA; p = .0032), γ-amino butyric acid (GABA; p = .0123), glutamate (p = .0217) and aspartate (p = .0124). In opposition, the content of glycine (p = .0168) and the vanillylmandelic acid (VMA)/NOR ratio (p = .032) were decreased. Regarding to dopaminergic system, neither dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) contents nor the turnover rate of DA showed statistically significant differences between WT and mutant mice. Data demonstrated that audiogenic seizures of tremor mice are associated with progressive motor impairment as well as to hippocampal alterations of the Egr3 and Gabra1 gene expression and amino acid and monoamine content. In addition, the tremor mice could be useful for study of neurotransmission pathways as modulators of epilepsy and the pathogenesis of epilepsies occurring with generalized clonic seizures.


Assuntos
Estimulação Acústica/efeitos adversos , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Mutação/genética , Tremor/genética , Tremor/metabolismo , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/química , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Norepinefrina/metabolismo , Convulsões/genética , Convulsões/metabolismo , Serotonina/metabolismo
4.
Nutr Neurosci ; 22(11): 805-816, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29514592

RESUMO

Objectives: Estrogen and phytoestrogens, mainly isoflavones (SIF) treatment has been suggested to improve mood, behavior, and cognitive function in postmenopausal women. However, there is a lack of information on the mechanism of such treatment on the central nervous system. We used rats to investigate the effects of long-term treatment with commercial isoflavones on behavior, hormones, and brain neurotransmitter levels. Methods: Intact female middle-aged (12 months) rats received 50, 100, and 200 mg/kg/day of commercial isoflavones extract by gavage for 90 days. After treatment, locomotor activity, anxiety-like behavior, spatial memory, estradiol, and neurotransmitter levels were measured. Results: Isoflavones treatment decreased total body weight gain in rats received 100 (P < 0.05) and 200 mg/kg (P < 0.05). There were no differences in locomotor activity or anxiety-like behavior; however, isoflavone treatment improved spatial memory (P < 0.05). Estradiol concentration was increased (P < 0.05) in groups SIF 100 and SIF 200. Glutamate (P < 0.01) and γ-aminobutyric acid (GABA) were increased in the prefrontal cortex (PFC) of rats receiving the highest doses and in the hypothalamus in rats that received SIF200 (P < 0.05). Discussion: These findings showed that long-term treatment with commercial isoflavones decreased total body weight gain and facilitated spatial memory performance in rats and this may be involved with the increase in estradiol levels as well as the increase in GABA and glutamate levels in PFC. Furthermore, isoflavones treatment may attenuate age-related cognitive impairment and may therefore be an effective tool to combat this undesirable feature of the natural aging process.


Assuntos
Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Estradiol/análise , Ácido Glutâmico/análise , Isoflavonas/administração & dosagem , Ácido gama-Aminobutírico/análise , Animais , Ansiedade/prevenção & controle , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Menopausa/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
5.
Behav Brain Res ; 459: 114799, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38065224

RESUMO

Ketamine is an anesthetic drug that also has antidepressant properties, with quick action. Despite the great number of studies showing its effectiveness as a treatment for major depression, there is little information about its effects on postpartum depression, as pharmacological treatments bring risks to the health of both mother and child. Thus, this study aimed to evaluate the effects of prolonged treatment with subanesthetic doses of ketamine in a rat model of postpartum depression. Female dams were induced to postpartum depression by the maternal separation model from lactating day (LD) 2-12. They were divided into four groups: one control and three experimental groups, which were treated with different doses of ketamine (5, 10 or 20 mg/kg) from LD 2-21 i.p. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day 2 through 90. Ketamine causes poor maternal care, with few neurochemical alterations. However, the highest dose used in this study had an antidepressant effect. Regarding the male offspring, indirect exposure to ketamine through breast milk caused few behavioral changes during infancy, but they were not permanent, as they faded in adulthood. Nevertheless, this exposure was able to cause alterations in their monoaminergic neurotransmission systems that were found in both infancy and adulthood periods.


Assuntos
Depressão Pós-Parto , Transtorno Depressivo Maior , Ketamina , Humanos , Criança , Ratos , Masculino , Animais , Feminino , Depressão Pós-Parto/tratamento farmacológico , Lactação , Privação Materna , Depressão/tratamento farmacológico , Antidepressivos , Transtorno Depressivo Maior/tratamento farmacológico
6.
J Biol Chem ; 287(35): 29690-701, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22730318

RESUMO

The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as l-arginine and NO(x) production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NO(x) production. A likely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Citrulina/metabolismo , Células-Tronco Neurais/metabolismo , Óxido Nítrico/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso , Células-Tronco Neurais/citologia , Neurônios/citologia , Neurônios/metabolismo , Óxido Nítrico Sintase/biossíntese , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/metabolismo
7.
Behav Brain Res ; 443: 114329, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36746310

RESUMO

BACKGROUND: The tremor mutant mice present motor impairments comprised of whole-body tremors, ataxia, decreased exploratory behavior, and audiogenic seizures. OBJECTIVES: This study aims to investigate the development of motor dysfunction in this mutant mouse and the relationships with cortical, striatal, and cerebellar levels of GABA, glutamate, glycine, dopamine (DA), serotonin (5-HT), noradrenaline (NOR), and its metabolites. The serum cytokines levels, myelin content, and the astrocytic expression of the glial fibrillary acidic protein (GFAP) investigated the possible influence of inflammation in motor dysfunction. RESULTS: Relative to wild-type (WT) mice, the tremor mice presented: increased tremors and bradykinesia associated with postural instability, decreased range of motion, and difficulty in initiating voluntary movements directly proportional to age; reduced step length for right and left hindlimbs; reduced cortical GABA, glutamate and, aspartate levels, the DOPAC/DA and ratio and increased the NOR levels; in the striatum, the levels of glycine and aspartate were reduced while the HVA levels, the HVA/DA and 5HIAA/5-HT ratios increased; in the cerebellum the glycine, NOR and 5-HIAA levels increased. CONCLUSIONS: We suggest that the motor disturbances resulted mainly from the activation of the indirect striatal inhibitory pathway to the frontal cortex mediated by GABA, glutamate, and aspartate, reducing the dopaminergic activity at the prefrontal cortex, which was associated with the progressive tremor. The reduced striatal and increased cerebellar glycine levels could be partially responsible for the mutant tremor motor disturbances.


Assuntos
Transtornos Motores , Tremor , Camundongos , Animais , Tremor/metabolismo , Serotonina/metabolismo , Ácido Aspártico/metabolismo , Convulsões/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Corpo Estriado/metabolismo , Norepinefrina/metabolismo , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Glicina/metabolismo
8.
Behav Brain Res ; 436: 114082, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36041571

RESUMO

Postpartum depression is a mentally disabling disease with multifactorial etiology that affects women worldwide. It can also influence child development and lead to behavioral and cognitive alterations. Despite the high prevalence, the disease is underdiagnosed and poorly studied. To study the postpartum depression caused by maternal separation model in rats, dams were separated from their litter for 3 h daily starting from lactating day (LD) 2 through LD12. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day (PND) 2 through PND90. The stress caused by the dam-offspring separation led to poor maternal care and a transient increase in anxiety in the offspring detected during infancy. The female offspring also exhibited a permanent impairment in sociability during adult life. These changes were associated with neurochemical alterations in the prefrontal cortex and hippocampus, and low TSH concentrations in the dams, and in the hypothalamus, hippocampus and striatum of the offspring. These results indicate that the postpartum depression resulted in a depressive phenotype, changes in the brain neurochemistry and in thyroid economy that remained until the end of lactation. Changes observed in the offspring were long-lasting and resemble what is observed in children of depressant mothers.


Assuntos
Depressão Pós-Parto , Animais , Corticosterona , Modelos Animais de Doenças , Feminino , Lactação , Privação Materna , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/etiologia , Tireotropina
9.
PLoS Negl Trop Dis ; 15(9): e0009715, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478462

RESUMO

Patients bitten by snakes consistently manifest a bleeding tendency, in which thrombocytopenia, consumption coagulopathy, mucous bleeding, and, more rarely, thrombotic microangiopathy, are observed. Von Willebrand factor (VWF) is required for primary hemostasis, and some venom proteins, such as botrocetin (a C-type lectin-like protein) and snake venom metalloproteinases (SVMP), disturb the normal interaction between platelets and VWF, possibly contributing to snakebite-induced bleedings. To understand the relationship among plasma VWF, platelets, botrocetin and SVMP from Bothrops jararaca snake venom (BjV) in the development of thrombocytopenia, we used (a) Wistar rats injected s.c. with BjV preincubated with anti-botrocetin antibodies (ABA) and/or Na2-EDTA (a SVMP inhibitor), and (b) VWF knockout mice (Vwf-/-) injected with BjV. Under all conditions, BjV induced a rapid and intense thrombocytopenia. In rats, BjV alone reduced the levels of VWF:Ag, VWF:CB, high molecular weight multimers of VWF, ADAMTS13 activity, and factor VIII. Moreover, VWF:Ag levels in rats that received BjV preincubated with Na2-EDTA and/or ABA tended to recover faster. In mice, BjV caused thrombocytopenia in both Vwf-/- and C57BL/6 (background control) strains, and VWF:Ag levels tended to decrease in C57BL/6, demonstrating that thrombocytopenia was independent of the presence of plasma VWF. These findings showed that botrocetin present in BjV failed to affect the extent or the time course of thrombocytopenia induced by envenomation, but it contributed to decrease the levels and function of plasma VWF. Thus, VWF alterations during B. jararaca envenomation are an ancillary event, and not the main mechanism leading to decreased platelet counts.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Mordeduras de Serpentes/complicações , Venenos de Serpentes/toxicidade , Trombocitopenia/etiologia , Trombocitopenia/metabolismo , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Venenos de Crotalídeos/metabolismo , Feminino , Humanos , Masculino , Metaloproteases/metabolismo , Metaloproteases/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Venenos de Serpentes/enzimologia , Venenos de Serpentes/metabolismo , Trombocitopenia/sangue , Trombocitopenia/genética , Fator de von Willebrand/genética
10.
World Neurosurg ; 155: e19-e33, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34325026

RESUMO

BACKGROUND: Intermittent explosive disorder (IED) is a psychiatric disorder characterized by recurrent outbursts of aggressive behavior. Deep brain stimulation (DBS) in the posteromedial nucleus of the hypothalamus (pHyp) is an alternative therapy for extreme cases and shows promising results. Intraoperative microdialysis can help elucidate the neurobiological mechanism of pHyp-DBS. We sought to evaluate efficacy and safety of pHyp-DBS using 8-contact directional leads in patients with refractory IED (rIED) and the accompanying changes in neurotransmitters. METHODS: This was a prospective study in which patients with a diagnosis of rIED were treated with pHyp-DBS for symptom alleviation. Bilateral pHyp-DBS was performed with 8-contact directional electrodes. Follow-up was performed at 3, 6, and 12 months after surgery. RESULTS: Four patients (3 men, mean age 27 ± 2.8 years) were included. All patients were diagnosed with rIED and severe intellectual disability. Two patients had congenital rubella, one had a co-diagnosis of infantile autism, and the fourth presented with drug-resistant epilepsy. There was a marked increase in the levels of gamma-aminobutyric acid and glycine during intraoperative stimulation. The average improvement in aggressive behavior in the last follow-up was 6 points (Δ: 50%, P = 0.003) while also documenting an important improvement of the Short Form Health Survey in all domains except bodily pain. No adverse events associated with pHyp-DBS were observed. CONCLUSIONS: This is the first study to show the safety and beneficial effect of directional lead pHyp-DBS in patients with rIED and to demonstrate the corresponding mechanism of action through increases in gamma-aminobutyric acid and glycine concentration in the pHyp.


Assuntos
Estimulação Encefálica Profunda , Transtornos Disruptivos, de Controle do Impulso e da Conduta/cirurgia , Hipotálamo/cirurgia , Adulto , Feminino , Humanos , Hipotálamo/fisiopatologia , Masculino , Estudos Prospectivos , Resultado do Tratamento , Adulto Jovem
11.
Brain Res ; 1754: 147237, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400930

RESUMO

The insula has emerged as a critical target for electrical stimulation since it influences pathological pain states. We investigated the effects of repetitive electrical stimulation of the insular cortex (ESI) on mechanical nociception, and general locomotor activity in rats subjected to chronic constriction injury (CCI) of the sciatic nerve. We also studied neuroplastic changes in central pain areas and the involvement of GABAergic signaling on ESI effects. CCI rats had electrodes implanted in the left agranular posterior insular cortex (pIC), and mechanical sensitivity was evaluated before and after one or five daily consecutive ESIs (15 min each, 60 Hz, 210 µs, 1 V). Five ESIs (repetitive ESI) induced sustained mechanical antinociception from the first to the last behavioral assessment without interfering with locomotor activity. A marked increase in Fos immunoreactivity in pIC and a decrease in the anterior and mid-cingulate cortex, periaqueductal gray and hippocampus were noticed after five ESIs. The intrathecal administration of the GABAA receptor antagonist bicuculline methiodide reversed the stimulation-induced antinociception after five ESIs. ESI increased GAD65 levels in pIC but did not interfere with GABA, glutamate or glycine levels. No changes in GFAP immunoreactivity were found in this work. Altogether, the results indicate the efficacy of repetitive ESI for the treatment of experimental neuropathic pain and suggest a potential influence of pIC in regulating pain pathways partially through modulating GABAergic signaling.


Assuntos
Analgesia , Estimulação Elétrica , Moduladores GABAérgicos/farmacologia , Neuralgia/terapia , Manejo da Dor , Analgesia/métodos , Animais , Moduladores GABAérgicos/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Limiar da Dor/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos Sprague-Dawley
13.
PLoS One ; 15(2): e0228959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084148

RESUMO

Secreted autotransporter toxin (Sat) is a 107-kDa serine protease autotransporter of Enterobacteriaceae (SPATE) presenting cytotoxic activity in renal and bladder cells. Further studies have detected the Sat-encoding gene (sat) in enteroaggregative Escherichia coli (EAEC) and in E. coli strains isolated from neonatal septicemia and meningitis. Here, we investigated the role of Sat as a cytotoxin of EAEC. Sat was purified from a strain of E. coli harboring sat (DEC/Sat+, O126:H2) and used to raise antibodies in rabbit. The presence of Sat was detected by ELISA in the supernatant of 93.7% of EAEC strains harboring sat and in none lacking the gene. The effect of Sat during infection was investigated in polarized Caco-2 cells infected with Sat-producing EAEC (CV323/77, O125ab:H21). This strain induced intense cell detachment, which was inhibited by PMSF or Sat antiserum. Also, sat transcription and Sat production were detected during infection. Here we demonstrate that Sat is internalized in polarized cells leading to F-actin disruption which preceded cell detachment. A comparative study of the toxin action in cell lines corresponding to the infection sites in which bacteria carrying the sat gene have been isolated was performed. Cells originating from the gastrointestinal tract (Caco-2), urinary (LLC-PK1) and endothelium (HUVEC) were incubated with purified Sat. The time required for observation of cell damage differed according to the cell line. HUVEC cells were more sensitive to Sat than cells derived from urinary and intestinal tracts. The intense activity of Sat on the endothelial cells suggests that Sat could also be a virulence factor for the bacteria in the bloodstream. In addition, this is the first work demonstrating that Sat induces cytotoxic effect during EAEC infection in vitro. The cell damage observed during infection indicates that Sat may be another toxin with cytotoxic role in the EAEC pathogenesis.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Toxinas Bacterianas/toxicidade , Células CACO-2 , Citotoxinas/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/toxicidade , Humanos , Serina Endopeptidases/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Fatores de Virulência/metabolismo
14.
Toxins (Basel) ; 12(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973132

RESUMO

Here, we report the neurotoxic effects aroused by the intracerebral injection (in rats) of Tb1, which is a neurotoxin isolated from Tityus bahiensis scorpion venom. Biochemical analyses have demonstrated that this toxin is similar to the gamma toxin from T. serrulatus, which is a ß-scorpion toxin that acts on sodium channels, causing the activation process to occur at more hyperpolarized membrane voltages. Male Wistar rats were stereotaxically implanted with intrahippocampal electrodes and cannulas for electroencephalographic recording and the evaluation of amino acid neurotransmitters levels. Treated animals displayed behavioral and electroencephalographic alterations similar to epileptiform activities, such as myoclonus, wet dog shakes, convulsion, strong discharges, neuronal loss, and increased intracerebral levels of glutamate. Scorpion toxins are important pharmacological tools that are widely employed in ion channel dysregulation studies. The current work contributes to the understanding of channelopathies, particularly epilepsy, which may originate, among other events, from dysfunctional sodium channels, which are the main target of the Tb1 toxin.


Assuntos
Ácido Glutâmico/metabolismo , Neurotoxinas/toxicidade , Venenos de Escorpião/toxicidade , Convulsões/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiologia , Masculino , Neurotoxinas/química , Ratos Wistar , Venenos de Escorpião/química , Escorpiões , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia , Canais de Sódio/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-32063920

RESUMO

BACKGROUND: Here, we described the presence of a neurotoxin with phospholipase A2 activity isolated from Micrurus lemniscatus venom (Mlx-8) with affinity for muscarinic acetylcholine receptors (mAChRs). METHODS: The purification, molecular mass determination, partial amino acid sequencing, phospholipase A2 activity determination, inhibition of the binding of the selective muscarinic ligand [3H]QNB and inhibition of the total [3H]inositol phosphate accumulation in rat hippocampus of the Mlx-8 were determined. RESULTS: Thirty-one fractions were collected from HPLC chromatography, and the Mlx-8 toxin was used in this work. The molecular mass of Mlx-8 is 13.628 Da. Edman degradation yielded the following sequence: NLYQFKNMIQCTNTRSWL-DFADYG-CYCGRGGSGT. The Mlx-8 had phospholipase A2 enzymatic activity. The pKi values were determined for Mlx-8 toxin and the M1 selective muscarinic antagonist pirenzepine in hippocampus membranes via [3H]QNB competition binding assays. The pKi values obtained from the analysis of Mlx-8 and pirenzepine displacement curves were 7.32 ± 0.15, n = 4 and 5.84 ± 0.18, n = 4, respectively. These results indicate that Mlx-8 has affinity for mAChRs. There was no effect on the inhibition ability of the [3H]QNB binding in hippocampus membranes when 1 µM Mlx-8 was incubated with 200 µM DEDA, an inhibitor of phospholipase A2. This suggests that the inhibition of the phospholipase A2 activity of the venom did not alter its ability to bind to displace [3H]QNB binding. In addition, the Mlx-8 toxin caused a blockade of 43.31 ± 8.86%, n = 3 and 97.42 ± 2.02%, n = 3 for 0.1 and 1 µM Mlx-8, respectively, on the total [3H]inositol phosphate content induced by 10 µM carbachol. This suggests that Mlx-8 inhibits the intracellular signaling pathway linked to activation of mAChRs in hippocampus. CONCLUSION: The results of the present work show, for the first time, that muscarinic receptors are also affected by the Mlx-8 toxin, a muscarinic ligand with phospholipase A2 characteristics, obtained from the venom of the Elapidae snake Micrurus lemniscatus, since this toxin was able to compete with muscarinic ligand [3H]QNB in hippocampus of rats. In addition, Mlx-8 also blocked the accumulation of total [3H]inositol phosphate induced by muscarinic agonist carbachol. Thus, Mlx-8 may be a new pharmacological tool for examining muscarinic cholinergic function.

16.
Pharmacol Biochem Behav ; 181: 1-8, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30946884

RESUMO

Varenicline is a drug used for smoking addiction cessation treatment and acts as a partial agonist of nicotinic cholinergic receptors. Recent clinical trial data support use of varenicline for treatment of conditions/addictions that are not related to smoking cessation. Considering the importance of this issue and the need for new studies on its effects, especially on behavior, more studies using animal models are necessary. Thus, the aim of this study was to evaluate the effects of prolonged exposure to varenicline in anxiety-like behavior and memory, as well as in cerebral neurochemistry of rats. Male rats received three different doses of varenicline: 0.03 (therapeutic dose for humans), 0.1 and 0.3 mg/kg orally (gavage) for 30 days. Animal behavior was analyzed through open field, elevated plus maze, light/dark box, social interaction, Barnes maze and novel object recognition tests. Neurotransmitter levels and their metabolites in different brain structures (hippocampus, striatum and frontal cortex) were measured. Results showed that prolonged exposure of rats to varenicline: 1) did not interfere in motor activity, but caused an anxiogenic effect on elevated plus maze, light/dark box and social interaction testes; 2) did not alter memory; and 3) promoted alterations on serotoninergic system in the striatum and frontal cortex. In conclusion, compilation of the data indicates that prolonged exposure of rats to varenicline promoted anxiogenic effects and alteration in serotonergic system, which corroborated behavioral findings.


Assuntos
Ansiedade/induzido quimicamente , Memória/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Vareniclina/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Modelos Animais , Atividade Motora/efeitos dos fármacos , Nicotina/antagonistas & inibidores , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Wistar , Serotonina/metabolismo , Fumar/tratamento farmacológico , Abandono do Hábito de Fumar/métodos , Vareniclina/administração & dosagem , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Ácido gama-Aminobutírico/metabolismo
17.
J Neurosurg ; 132(1): 239-251, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30611141

RESUMO

OBJECTIVE: Motor cortex stimulation (MCS) is a neurosurgical technique used to treat patients with refractory neuropathic pain syndromes. MCS activates the periaqueductal gray (PAG) matter, which is one of the major centers of the descending pain inhibitory system. However, the neurochemical mechanisms in the PAG that underlie the analgesic effect of MCS have not yet been described. The main goal of this study was to investigate the neurochemical mechanisms involved in the analgesic effect induced by MCS in neuropathic pain. Specifically, we investigated the release of γ-aminobutyric acid (GABA), glycine, and glutamate in the PAG and performed pharmacological antagonism experiments to validate of our findings. METHODS: Male Wistar rats with surgically induced chronic constriction of the sciatic nerve, along with sham-operated rats and naive rats, were implanted with both unilateral transdural electrodes in the motor cortex and a microdialysis guide cannula in the PAG and subjected to MCS. The MCS was delivered in single 15-minute sessions. Neurotransmitter release was evaluated in the PAG before, during, and after MCS. Quantification of the neurotransmitters GABA, glycine, and glutamate was performed using a high-performance liquid chromatography system. The mechanical nociceptive threshold was evaluated initially, on the 14th day following the surgery, and during the MCS. In another group of neuropathic rats, once the analgesic effect after MCS was confirmed by the mechanical nociceptive test, rats were microinjected with saline or a glycine antagonist (strychnine), a GABA antagonist (bicuculline), or a combination of glycine and GABA antagonists (strychnine+bicuculline) and reevaluated for the mechanical nociceptive threshold during MCS. RESULTS: MCS reversed the hyperalgesia induced by peripheral neuropathy in the rats with chronic sciatic nerve constriction and induced a significant increase in the glycine and GABA levels in the PAG in comparison with the naive and sham-treated rats. The glutamate levels remained stable under all conditions. The antagonism of glycine, GABA, and the combination of glycine and GABA reversed the MCS-induced analgesia. CONCLUSIONS: These results suggest that the neurotransmitters glycine and GABA released in the PAG may be involved in the analgesia induced by cortical stimulation in animals with neuropathic pain. Further investigation of the mechanisms involved in MCS-induced analgesia may contribute to clinical improvements for the treatment of persistent neuropathic pain syndromes.


Assuntos
Analgesia/métodos , Estimulação Encefálica Profunda , Glicina/fisiologia , Córtex Motor/fisiopatologia , Neuralgia/terapia , Substância Cinzenta Periaquedutal/fisiopatologia , Ciática/terapia , Ácido gama-Aminobutírico/fisiologia , Animais , Bicuculina/administração & dosagem , Bicuculina/toxicidade , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/fisiologia , Antagonistas GABAérgicos/administração & dosagem , Antagonistas GABAérgicos/toxicidade , Ácido Glutâmico/análise , Glicina/análise , Glicina/antagonistas & inibidores , Glicina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Hiperalgesia/terapia , Masculino , Microdiálise , Microinjeções , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Limiar da Dor , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos , Ratos Wistar , Nervo Isquiático/lesões , Ciática/tratamento farmacológico , Ciática/fisiopatologia , Estricnina/administração & dosagem , Estricnina/toxicidade , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/uso terapêutico
18.
Toxicon ; 52(1): 13-21, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18588907

RESUMO

Amphibian skin secretions are considered a rich source of biologically active compounds and are known to be rich in peptides, bufadienolides and alkaloids. Bufadienolides are cardioactive steroids from animals and plants that have also been reported to possess antimicrobial activities. Leishmaniasis and American Trypanosomiasis are parasitic diseases found in tropical and subtropical regions. The efforts toward the discovery of new treatments for these diseases have been largely neglected, despite the fact that the only available treatments are highly toxic drugs. In this work, we have isolated, through bioguided assays, the major antileishmanial compounds of the toad Rhinella jimi parotoid macrogland secretion. Mass spectrometry and (1)H and (13)C NMR spectroscopic analyses were able to demonstrate that the active molecules are telocinobufagin and hellebrigenin. Both steroids demonstrated activity against Leishmania (L.) chagasi promastigotes, but only hellebrigenin was active against Trypanosoma cruzi trypomastigotes. These steroids were active against the intracellular amastigotes of Leishmania, with no activation of nitric oxide production by macrophages. Neither cytotoxicity against mouse macrophages nor hemolytic activities were observed. The ultrastructural studies with promastigotes revealed the induction of mitochondrial damage and plasma membrane disturbances by telocinobufagin, resulting in cellular death. This novel biological effect of R. jimi steroids could be used as a template for the design of new therapeutics against Leishmaniasis and American Trypanosomiasis.


Assuntos
Bufanolídeos/farmacologia , Bufonidae/metabolismo , Leishmania infantum/efeitos dos fármacos , Glândula Parótida/metabolismo , Tripanossomicidas/farmacologia , Animais , Bufanolídeos/química , Bufanolídeos/isolamento & purificação , Cricetinae , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/biossíntese , Trypanosoma cruzi/efeitos dos fármacos
19.
Protein Pept Lett ; 15(10): 1100-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19075822

RESUMO

Botulinum (BoNT) and tetanus (TeNT) neurotoxins are bacterial zinc metalloproteases that cleave and inactivate cellular proteins essential for neurotransmitter release. There are seven serotypes of BoNT, while TeNT is found in one serotype. In order to characterize their enzymatic activities and to propose serotype-differentiation an enzymatic assay based on their metalloprotease activity was developed. The assays were conducted with FRET peptides derived from SNAP-25, synaptobrevin and syntaxin. The substrates were cleaved by 2 ng/mL of toxin at different rates (K(cat)/K(M) from 0.028 to 75.9 microM.s(-)) at a single bond, as confirmed by Q-TOF mass spectrometry. Inhibition of the hydrolysis was obtained with EDTA or with specific antibodies directed to each neurotoxin. Different substrate selectivities, especially by BoNT- A and E, suggest that these substrates can be used as a putative method for clostridial toxin quantification and serotype differentiation and could be easily adapted to a high-throughput protocols.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas/metabolismo , Metaloendopeptidases/metabolismo , Peptídeos/metabolismo , Proteínas R-SNARE/metabolismo , Toxina Tetânica/metabolismo , Sequência de Aminoácidos , Animais , Transferência Ressonante de Energia de Fluorescência , Hidrólise , Cinética , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Proteínas R-SNARE/química
20.
Res Vet Sci ; 84(1): 100-6, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17559896

RESUMO

The moxidectin (MXD) is an antiparasitic drug used in domestic animals. The mechanism of action, in mammals, involves GABA, a neurotransmitter with an important role in the sexual behavior control. Presently, the effects of 0.2 mg/kg therapeutic dose were studied on sexual behavior, sexual motivation, penile erection and central GABA levels. Sexual behavior results showed increased latencies to the first mount and intromission as well as in inter-intromission interval; a reduction in total mounts was detected on the drug post-treatment. No difference was observed between sexual motivation of control and experimental animals. MXD treatment reduced penile erection and hypothalamic GABA levels. The results suggest that MXD reduced sexual behavior and penile erection by an action on the hypothalamic GABA system. Probably, the lack of effects in the motivational test and the increased mount and intromission latencies as well as decreased total mounts could be explained as a consequence of reduced male rat erection process.


Assuntos
Anti-Helmínticos/efeitos adversos , Hipotálamo/efeitos dos fármacos , Ereção Peniana/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Macrolídeos/efeitos adversos , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA