Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 16(2): 293-301, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25487639

RESUMO

Cyclic peptides containing redox-stable thioether bridges might provide a useful alternative to disulfide-bridged bioactive peptides. We report the effect of replacing the disulfide bridge with a lanthionine linkage in a 16-mer cyclic peptide that binds to death receptor 5 (DR5, TRAIL-R2). Upon covalent oligomerisation, the disulfide-bridged peptide has previously shown similar behaviour to that of TNF-related apoptosis inducing ligand (TRAIL), by selectively triggering the DR5 cell death pathway. The structural and biological properties of the DR5-binding peptide and its desulfurised analogue were compared. Surface plasmon resonance (SPR) data suggest that these peptides bind DR5 with comparable affinities. The same holds true for dimeric versions of these peptides: the thioether is able to induce DR5-mediated apoptosis of BJAB lymphoma and tumorigenic BJELR cells, albeit to a slightly lower extent compared to its disulfide homologue. NMR analysis revealed subtle variation in the conformations of the two peptides and suggests that the thioether peptide is slightly less folded than its disulfide homologue. These observations could account for the different capability of the two dimers to cluster DR5 receptors on the cell surface and to trigger apoptosis. Nevertheless, our results suggest that the thioether peptide is a potential candidate for evaluation in animal models.


Assuntos
Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Sulfetos/química , Alanina/análogos & derivados , Alanina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Técnicas de Química Sintética , Dimerização , Dissulfetos/química , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Espectroscopia de Ressonância Magnética , Terapia de Alvo Molecular , Peptídeos Cíclicos/metabolismo , Conformação Proteica , Ressonância de Plasmônio de Superfície
2.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 10): o2039, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21201231

RESUMO

The title compound, C(10)H(15)NO(4), also known as N-tert-butyl-oxycarbonyl-allohydr-oxy-l-proline lactone, is quite similar to N-acetyl-allohydr-oxy-l-proline lactone [Lenstra, Petit & Geise (1979 ▶). Cryst. Struct. Commun. 8, 1023-1029], whereby both carbonyl groups point roughly in the same direction because of the trans conformation of the peptide bond.

3.
Oncotarget ; 9(21): 15566-15578, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643993

RESUMO

Tumor Necrosis Factor Receptor Apoptosis Inducing Ligand (TRAIL) appears as an interesting candidate for targeted cancer therapy as it induces apoptosis in cancer cells without toxicity to normal cells. TRAIL elicits apoptosis through agonist death receptor TRAIL-R1 and TRAIL-R2 engagement. Nevertheless, recombinant soluble TRAIL and monoclonal antibodies against these receptors demonstrated insufficient efficacy in clinical trials. This may be explained by the cell-type dependency of the apoptotic response, itself influenced by the effect on ligand binding mode of factors such as the level of receptor oligomerization or glycosylation. To investigate the relation between binding mode and signaling, we used previously described synthetic divalent and monovalent peptides specific for TRAIL-R2. We measured their pro-apoptotic activity on three cancer cell lines sensitive to rhTRAIL induced-apoptosis and monitored their cell-surface binding kinetics. The two divalent peptides bound with strong affinity to TRAIL-R2 expressed on B lymphoma BJAB cells and induced a high degree of apoptosis. By contrast, the same peptides bound weakly to TRAIL-R2 expressed at the surface of the human colon cancer HCT116 or T lymphoma Jurkat cell lines and did not induce their apoptosis. Cross-linking experiments suggest that these differences could be afforded by variations in the TRAIL-R2 oligomerization state at cell surface before ligand addition. Moreover divalent peptides showed a different efficiency in BJAB apoptosis induction, and kinetic distribution analysis of the BJAB binding curves suggested subtle differences in binding mechanisms. Thus our data support a relation between the cell-surface binding mode of the peptides and their pro-apoptotic activity. In this case the precise characterization of ligand binding to the surface of living cells would be predictive of the therapeutic potential of TRAIL-R2 synthetic ligands prior to clinical trials.

4.
Oncotarget ; 7(40): 64942-64956, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27409341

RESUMO

DR4 (Death Receptor 4) and DR5 (Death Receptor 5) are two potential targets for cancer therapy due to their ability to trigger apoptosis of cancer cells, but not normal ones, when activated by their cognate ligand TRAIL (TNF related apoptosis-inducing ligand). Therapies based on soluble recombinant TRAIL or agonist antibodies directed against one of the receptors are currently under clinical trials. However, TRAIL-R positive tumor cells are frequently resistant to TRAIL induced apoptosis. The precise mechanisms of this resistance are still not entirely understood. We have previously reported on synthetic peptides that bind to DR5 (TRAILmim/DR5) and induce tumor cell apoptosis in vitro and in vivo. Here, we showed that while hexameric soluble TRAIL is able to efficiently kill the DR5 positive lymphoma Jurkat or the carcinoma HCT116, these cells are resistant to apoptosis induced by the divalent form of TRAILmim/DR5 and are poorly sensitive to apoptosis induced by an anti-DR5 agonist monoclonal antibody. This resistance can be restored by the cross-linking of anti-DR5 agonist antibody but not by the cross-linking of the divalent form of TRAILmim/DR5. Interestingly, the divalent form of TRAILmim/DR5 that induced apoptosis of DR5 positive BJAB cells, acts as an inhibitor of TRAIL-induced apoptosis on Jurkat and HCT116 cells. The rapid internalization of DR5 observed when treated with divalent form of TRAILmim/DR5 could explain the antagonist activity of the ligand on Jurkat and HCT116 cells but also highlights the independence of the mechanisms responsible for internalization and activation when triggering the DR5 apoptotic cascade.


Assuntos
Imunoterapia/métodos , Neoplasias/metabolismo , Multimerização Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Apoptose , Células HCT116 , Humanos , Células Jurkat , Ligantes , Terapia de Alvo Molecular , Neoplasias/terapia , Especificidade de Órgãos , Agregação de Receptores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/síntese química , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico
5.
Cancer Res ; 70(3): 1101-10, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20103630

RESUMO

Ongoing clinical trials are exploring anticancer approaches based on signaling by TRAIL, a ligand for the cell death receptors DR4 and DR5. In this study, we report on the selective apoptotic effects of multivalent DR5 binding peptides (TRAIL(mim/DR5)) on cancer cells in vitro and in vivo. Surface plasmon resonance revealed up to several thousand-fold increased affinities of TRAIL(mim/DR5)-receptor complexes on generation of divalent and trivalent molecules, the latter of which was achieved with a conformationally restricted adamantane core. Notably, only multivalent molecules triggered a substantial DR5-dependent apoptotic response in vitro. In tumor models derived from human embryonic kidney cells or primary foreskin fibroblasts, TRAIL(mim/DR5) peptides exerted a cancer cell-selective action that could synergize with resveratrol in a manner independent of p53. In a xenograft model of human colon cancer, a divalent TRAIL(mim/DR5) peptide inhibited tumor growth. Our results offer a proof-of-principle for the development of synthetic small molecules to trigger the TRAIL apoptosis pathway for cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos Fitogênicos/farmacologia , Western Blotting , Linhagem Celular , Células Cultivadas , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Resveratrol , Estilbenos/farmacologia , Ressonância de Plasmônio de Superfície , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA