Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764212

RESUMO

This study describes the valorization of a pine wood by-product (Pinus pinaster) in the form of individualized fibers to a complex copper or more broadly metals present in an aqueous solution using a batch process. The adsorption results show that pine fibres activated by sodium carbonate are effective in recovering copper ions from monocontaminated or polycontaminated solutions of varying concentrations in a few minutes. One gram of material captures 2.5 mg of copper present in 100 mL of solution at pH 5 in less than 10 min. The results are perfectly reproducible and independent of pH between 3 and 5. The presence of the Na+ cation at concentrations of 0.1 M has no impact on material performance, unlike that of Ca2+ ions, which competes with Cu2+ ions for active sites. The adsorption process can be considered as rapid, as most of the copper is adsorbed within the first 10 min of exposure. Investigation of modeling possibilities shows some limitations. Indeed, the Weber and Morris and Elovich models show poor possibilities to describe all the kinetic data for copper adsorption on fibres. This may prove that the mechanism is far more complex than simple physisorption, chemisorption and/or diffusion. Complexation by wood fibers can be extended to solutions containing several types of metals. The results of this study show that the field of selective metal recovery could be a new way of valorizing by-products from the wood industry.


Assuntos
Pinus , Poluentes Químicos da Água , Cobre/química , Difusão , Cátions , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Soluções , Madeira
2.
Biotechnol Biofuels Bioprod ; 15(1): 149, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581887

RESUMO

BACKGROUND: During the kraft process to obtain cellulosic pulp from wood, most of the lignin is removed by high-temperature alkaline cooking, released in the black liquors and usually incinerated for energy. However, kraft lignins are a valuable source of phenolic compounds that can be valorized in new bio-based products. The aim of this work is to develop laccases capable of working under the extreme conditions of high temperature and pH, typical of the industrial conversion of wood into kraft pulp and fibreboard, in order to provide extremophilic biocatalysts for depolymerising kraft lignin, and enzyme-assisted technologies for kraft pulp and fibreboard production. RESULTS: Through systematic enzyme engineering, combining enzyme-directed evolution and rational design, we changed the optimal pH of the laccase for oxidation of lignin phenols from acidic to basic, enhanced the catalytic activity at alkaline pH and increased the thermal tolerance of the enzyme by accumulating up to eight mutations in the protein sequence. The extremophilic laccase variants show maximum activity at 70 °C and oxidize kraft lignin at pH 10. Their integration into industrial-type processes saves energy and chemicals. As a pre-bleaching stage, the enzymes promote kraft pulp bleachability and significantly reduce the need for chlorine dioxide compared to the industrial sequence. Their application in wood chips during fibreboard production, facilitates the defibering stage, with less energy required. CONCLUSIONS: A set of new alkaliphilic and thermophilic fungal laccases has been developed to operate under the extreme conditions of high temperature and pH typical of industrial wood conversion processes. For the first time basidiomycete laccases of high-redox potential show activity on lignin-derived phenols and polymeric lignin at pH 10. Considering the extreme conditions of current industrial processes for kraft pulp and fibreboard production, the new tailor-made laccases constitute a step forward towards turning kraft pulp mills into biorefineries. Their use as biocatalysts in the wood conversion sector is expected to support the development of more environmentally sound and efficient processes, and more sustainable products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA