Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Sci ; 7(12): 2550-9, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9865949

RESUMO

Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Fosfatos/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Cristalografia por Raios X , Fluorescência , Cinética , Modelos Moleculares , Mutação , Concentração Osmolar , Proteínas de Ligação a Fosfato , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Propriedades de Superfície , Triptofano
2.
Mol Microbiol ; 20(1): 17-25, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8861200

RESUMO

Crystallographic structure refinement at very high resolutions of a dozen periplasmic receptors has revealed that, though they have different sizes (26 to 60 kDa) and little sequence homology, they have high tertiary structure similarity. They consist of two distinct globular domains bisected by a cleft or groove wherein the ligand binds and is buried by a hinge-bending motion between the two domains. Structural analysis also reveals how hydrogen-bonding interactions can be tailored to a wide spectrum of specificity, ranging from the stringent specificity for phosphate and sulphate to the more loose specificity for peptides.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Quimiotaxia , Bactérias Gram-Negativas/química , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico Ativo , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Proteica
3.
J Biol Chem ; 269(40): 25091-4, 1994 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-7929197

RESUMO

Phosphorous, primarily in the form of phosphate, is a critical nutrient for the life of a cell. We have previously determined the 1.7-A resolution structure of the phosphate-binding protein, an initial receptor for the high-affinity phosphate active transport system or permease in Escherichia coli (Luecke, H., and Quiocho, F.A. (1990) Nature 347, 402-406). This structure is the first to reveal the key role of hydrogen bonding interactions in conferring the high specificity of the permease, a specificity also shared by other phosphate transport systems. Both monobasic and dibasic phosphates are recognized by the phosphate-binding protein with Asp56 playing a key role. Here we report site-directed mutagenesis, ligand binding, and crystallographic studies of the binding protein which show that introduction of one additional Asp by mutagenesis of the Thr141 in the ligand-binding site restricts binding to only the monobasic phosphate.


Assuntos
Proteínas de Transporte/química , Fosfatos/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia , Escherichia coli/química , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/química , Proteínas de Ligação a Fosfato , Sensibilidade e Especificidade
4.
Biochemistry ; 35(7): 2079-85, 1996 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-8652549

RESUMO

Electrostatic interactions are among the key forces determining the structure and function of proteins. These are exemplified in the liganded form of the receptor, a phosphate binding protein from Escherichia coli. The phosphate, completely dehydrated and buried in the receptor, is bound by 12 hydrogen bonds as well as a salt link with Arg 135. We have modulated the ionic attraction while preserving the hydrogen bonds by mutating Asp 137, also salt linked to Arg 135, to Asn, Gly or Thr. High-resolution crystallographic analysis revealed that Gly and Thr (but not Asn) mutant proteins have incorporated a more electronegative Cl- in place of the Asp carboxylate. That no dramatic effect on phosphate affinity was produced by these ionic perturbations indicates a major role for hydrogen bonds and other local dipoles in the binding and charge stabilization of ionic ligands.


Assuntos
Proteínas de Transporte/química , Fosfatos/química , Sais/química , Asparagina/química , Ácido Aspártico/química , Transporte Biológico Ativo , Proteínas de Transporte/genética , Cloretos/química , Eletroquímica , Ligação de Hidrogênio , Mutagênese Sítio-Dirigida , Conformação Proteica
5.
Proc Natl Acad Sci U S A ; 93(13): 6786-91, 1996 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-8692896

RESUMO

Determination of the crystal structure of an "open" unliganded active mutant (T141D) form of the Escherichia coli phosphate receptor for active transport has allowed calculation of the electrostatic surface potential for it and two other comparably modeled receptor structures (wild type and D137N). A discovery of considerable implication is the intensely negative potential of the phosphate-binding cleft. We report similar findings for a sulfate transport receptor, a DNA-binding protein, and, even more dramatically, redox proteins. Evidently, for proteins such as these, which rely almost exclusively on hydrogen bonding for anion interactions and electrostatic balance, a noncomplementary surface potential is not a barrier to binding. Moreover, experimental results show that the exquisite specificity and high affinity of the phosphate and sulfate receptors for unions are insensitive to modulations of charge potential, but extremely sensitive to conditions that leave a hydrogen bond donor or acceptor unpaired.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos/metabolismo , Ânions , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Transporte Biológico Ativo , Cristalografia por Raios X , Eletroquímica , Escherichia coli/genética , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA