Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Skin Res Technol ; 29(5): e13334, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37231930

RESUMO

PURPOSE: Current skin imaging modalities, including optical, electron, and confocal microscopy, mostly require tissue fixations that could damage proteins and biological molecules. Live tissue or cell imaging such as ultrasonography and optical coherent microscope may not adequately measure the dynamic spectroscopical changes. Raman spectroscopy has been adopted for skin imaging in vivo, mostly for skin cancer imaging. However, whether the epidermal and dermal thickening in skin could be measured and distinguished by conventional Ramen spectroscopy or the surface-enhanced Raman scattering (SERS), a rapid and label-free method for noninvasive measurement remains unknown. METHODS: Human skin sections from patients of atopic dermatitis and keloid, which represent epidermal and dermal thickening, respectively, were measured by conventional Ramen spectroscopy. In mice, skin sections from imiquimod (IMQ)- and bleomycin (BLE)-treated mice, which reflect the epidermal and dermal thickening, respectively, were measured by SERS, that incorporates gold nanoparticles to generate surface plasma and enhance Raman signals. RESULTS: Conventional Ramen spectroscopy failed to consistently show the Raman shift in human samples among the different groups. SERS successfully revealed a prominent peak around 1300 cm-1 in the IMQ-treated skin; and two significant peaks around 1100 and 1300 cm-1 in BLE-treated group. Further quantitative analysis showed 1100 cm-1 peak was significantly accentuated in the BLE-treated skin than that in control skin. SERS identified in vitro a similar 1100 cm-1 peak in solutions of collagen, the major dermal biological molecules. CONCLUSION: SERS distinguishes the epidermal or dermal thickening in mouse skin with rapid and label-free measures. A prominent 1100 cm-1 SERS peak in the BLE-treated skin may result from collagen. SERS might help precision diagnosis in the future.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Humanos , Animais , Camundongos , Análise Espectral Raman/métodos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Pele/diagnóstico por imagem , Colágeno
2.
Phys Chem Chem Phys ; 22(38): 21776-21783, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32966363

RESUMO

Molybdenum disulfide (MoS2) is one of the two-dimensional layered semiconductor transition metal dichalcogenides (TMDCs) with great potential in electronics, optoelectronics, and spintronic devices. Sulfur vacancies in MoS2 are the most prevalent defects. However, the effect of sulfur vacancies on the electronic structure of MoS2 is still in dispute. Here we experimentally and theoretically investigated the effect of sulfur vacancies in MoS2. The vacancies were intentionally introduced by thermal annealing of MoS2 crystals in a vacuum environment. Angle-resolved photoemission spectroscopy (ARPES) was used directly to observe the electronic structure of the MoS2 single crystals. The experimental result distinctly revealed the appearance of an occupied defect state just above the valence band maximum (VBM) and an upward shift of the VBM after creating sulfur vacancies. In addition, density functional theory (DFT) calculations also confirmed the existence of the occupied defect state close to the VBM as well as two deep unoccupied states induced by the sulfur vacancies. Our results provide evidence to contradict that sulfur vacancies indicate the origin of n-type behaviour in MoS2. This work provides a rational strategy for tuning the electronic structures of MoS2.

3.
Opt Lett ; 44(5): 1072-1075, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821773

RESUMO

This Letter compared the absorption characteristics of a homemade graphene-Bi2Te3 (G-B) van der Waals heterostructure to a Bi2Te3 topological insulator (TI) with a similar preparation method and number of layers. The results indicate that the G-B heterostructure can tremendously enhance the modulation depth and saturable intensity. In addition, a passively Q-switched laser at 1.06 µm with a G-B heterostructure as a saturable absorber (SA) was demonstrated for the first time, to the best of our knowledge. Compared to Bi2Te3 TI, the G-B heterostructure Q-switched laser had better laser performance, indicating that a G-B heterostructure is a promising SA candidate for a 1 µm laser.

4.
Opt Lett ; 44(6): 1512-1515, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874689

RESUMO

In this work, for the first time, to the best of our knowledge, an anomalous dispersion CMOS-compatible Ta2O5 waveguide was realized, and broadband on-chip supercontinuum generation (SCG) was accordingly demonstrated. When pumped at a center wavelength of 1056 nm with pulses of 100 fs duration and peak power of 396 W, a supercontinuum ranging from 585 nm to 1697 nm was generated, comprising a bandwidth of more than 1.5 octaves and leading to an efficient SCG source. The excellent performance for Ta2O5 to generate SCG benefits mainly from its high nonlinear refractive index, which enhances the efficiency of the nonlinear conversion process.

5.
Opt Lett ; 42(23): 4804-4807, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216115

RESUMO

The Ta2O5-based micro-ring resonator with an unloaded quality factor of 182,000 has been demonstrated to realize efficient nonlinear wavelength generation. The propagation loss of the resonator is 0.5 cm-1, and the buildup factor of the ring resonator is estimated to be ∼50. With a high buildup factor of the ring structure, the four-wave-mixing (FWM) conversion efficiency of -30 dB is achieved in the resonator with a pump power of 6 mW. Based on power-dependent FWM results, the nonlinear refractive index of Ta2O5 is estimated to be 1.4×10-14 cm2/W at a wavelength of ∼1550 nm. The demonstration of an enhanced FWM process in the Ta2O5-based micro-ring cavity implies the possibility of realizing FWM-based optical parametric oscillation in a Ta2O5-based micro-ring resonator.

6.
Opt Express ; 24(19): 21633-41, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661901

RESUMO

Optical spectra broadening as a result self-phase modulation in a channel waveguide fabricated on a high quality tantalum pentoxide (Ta2O5) film by using RF sputtering is measured. The full-width at half maximum of the optical spectra for transverse electric (TE)/transverse magnetic (TM) polarizations of 42.5/31.7 nm is obtained using pulses of 10 nm at a wavelength of 800 nm with a peak-coupled power of 43.77 W. The nonlinear Kerr coefficients of 2.14 × 10-14 cm2/W and 1.92 × 10-14 cm2/W for TE and TM polarizations, respectively, are then extracted from the experiments using a theoretical model based on the method of moments. The obtained results on the nonlinearity further suggest that Ta2O5 is a promising material to develop nonlinear waveguide devices for integrated photonics.

7.
Opt Express ; 23(20): 26268-75, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480140

RESUMO

A low-loss and high-Q Ta(2)O(5) based micro-ring resonator is presented. The micro-ring resonator and channel waveguide with core area of the 700 by 400 nm(2) were fabricated on amorphous Ta(2)O(5) thin films prepared by reactive sputtering at 300°C and post annealing at 650°C for 3 hours. The Ta(2)O(5) micro-ring resonator with a diameter of 200 µm was coupled to the channel waveguide with a coupled Q up to 38,000 at a 0.9 µm coupling gap. By fitting the transmission spectrum of the resonator, the extracted loss coefficient inside the ring cavity and transmission coefficient of TE mode were 8.1dB/cm and 0.9923, leading to the estimated unloaded Q of higher than 44,000. In addition, based on the cut-back method, the propagation loss and the coupling loss of Ta(2)O(5) channel waveguide with an inverse taper were 1.5dB/cm and 3.2 dB, respectively. The proposed Ta(2)O(5) technology offers an unique alternative for fabricating high performance guided wave devices, and may well lead to novel applications in photonic integrated circuits.

8.
Opt Lett ; 40(19): 4528-31, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26421573

RESUMO

A degenerate four-wave-mixing (FWM) operation in the Ta2O5 submicrometer channel waveguide has been successfully demonstrated. The propagation loss of 1.5 dB/cm and total insertion loss of 5.1 dB are realized in a 12.6 mm long waveguide with inverse taper structure. The wavelength and quadratic pumping power-dependent measurements on optical transmission confirm FWM performance and characterize the nonlinearity of waveguide. The conversion efficiency of -50 dB at coupled pump power of 40 mW is observed, suggesting that the nonlinear refractive index of Ta2O5 waveguide at 1550 nm is estimated to be 1×10(-14) cm2/W. Our primary results indicate that the Ta2O5 submicrometer channel waveguide has great potential in developing nonlinear waveguide applications.

9.
Nat Commun ; 15(1): 1726, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409174

RESUMO

Electronic processors are reaching the physical speed ceiling that heralds the era of optical processors. Multifunctional all-optical logic gates (AOLGs) of massively parallel processing are of great importance for large-scale integrated optical processors with speed far in excess of electronics, while are rather challenging due to limited operation bandwidth and multifunctional integration complexity. Here we for the first time experimentally demonstrate a reconfigurable all-in-one broadband AOLG that achieves nine fundamental Boolean logics in a single configuration, enabled by ultrabroadband (400-4000 nm) plasmon-enhanced thermo-optical nonlinearity (TONL) of liquid-metal Galinstan nanodroplet assemblies (GNAs). Due to the unique heterogeneity (broad-range geometry sizes, morphology, assembly profiles), the prepared GNAs exhibit broadband plasmonic opto-thermal effects (hybridization, local heating, energy transfer, etc.), resulting in a huge nonlinear refractive index under the order of 10-4-10-5 within visual-infrared range. Furthermore, a generalized control-signal light route is proposed for the dynamic TONL modulation of reversible spatial-phase shift, based on which nine logic functions are reconfigurable in one single AOLG configuration. Our work will provide a powerful strategy on large-bandwidth all-optical circuits for high-density data processing in the future.

10.
Opt Express ; 19(24): 23689-97, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109395

RESUMO

Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed.


Assuntos
Lasers , Iluminação/instrumentação , Transdutores , Desenho Assistido por Computador , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons , Radiação Terahertz
11.
Opt Express ; 19(5): 4036-41, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21369231

RESUMO

The dependence of thickness and concentration product (TCP) of single-wall carbon nanotubes saturable absorber (SWCNTs SA) on stabilizing and shortening pulsewidth in mode-locked fiber lasers (MLFLs) was investigated. We found that an optimized TCP for pulse energy and nonlinear self-phase modulation (SPM) enabled to determine the shorter pulsewidth and broader 3-dB spectral linewidth of the MLFLs. The shortest MLFL pulsewidth of 418 fs and broad spectral linewidth of 6 nm were obtained as the optimized TCP was 70.93 (µm•wt%), which was in good agreement with the area theorem prediction. This significant effect of TCP on pulse energy, SPM, pulsewidth, and spectral linewidth of MLFLs suggests that the TCP represents the total amount of SWCNTs in SA, which can be used as one of important and key parameters for characterizing the passive MLFL pulsewidth.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Processamento de Sinais Assistido por Computador/instrumentação , Absorção , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Nanotubos de Carbono/ultraestrutura , Espalhamento de Radiação
12.
Opt Lett ; 36(1): 76-8, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209692

RESUMO

This Letter presents an intracavity scheme for diode laser based two-photon spectroscopy. To demonstrate generality, three (133)Cs hyperfine transition groups of different wavelengths are shown. For the 6S-6D transitions, we achieved a 10(2) times better signal-to-noise ratio than in previous work [J. Phys. Soc. Jpn. 74, 2487 (2005)] with 10(-3) times less laser power, revealing some previously vague and unobserved spectra. Possible mutual influences between the two-photon absorber and laser cavity were investigated for the first time to our knowledge, which leads to the application of a reliable hand-sized optical frequency reference. Our approach is applicable for most of the two-photon spectroscopy of alkali atoms.

13.
Sci Rep ; 11(1): 7978, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846403

RESUMO

We fabricated tantalum pentoxide (Ta2O5) channel waveguides and used them to experimentally demonstrate higher-order mode supercontinuum (SC) generation. The Ta2O5 waveguide has a high nonlinear refractive index which was in an order magnitude of 10-14 cm2/W and was designed to be anomalously dispersive at the pumping wavelength. To the best of our knowledge, this is the first time a higher-order mode femtosecond pump based broadband SC has been measured from a nonlinear waveguide using the phase-matching method. This enabled us to demonstrate a SC spectrum spanning from 842 to 1462 nm (at - 30 dB), which corresponds to 0.83 octaves, when using the TM10 waveguide mode. When using the TE10 mode, the SC bandwidth is slightly reduced for the same excitation peak power. In addition, we theoretically estimated and discussed the possibility of using the broadband higher-order modes emitted from the Ta2O5 waveguide for trapping nanoparticles. Hence, we believe that demonstrated Ta2O5 waveguide are a promising broadband light source for optical applications such as frequency metrology, Raman spectroscopy, molecular spectroscopy and optical coherence tomography.

14.
ACS Nano ; 15(9): 15085-15095, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34435764

RESUMO

Antimonene is a promising two-dimensional (2D) material that is calculated to have a significant fundamental bandgap usable for advanced applications such as field-effect transistors, photoelectric devices, and the quantum-spin Hall (QSH) state. Herein, we demonstrate a phenomenon termed topological proximity effect, which occurs between a 2D material and a three-dimensional (3D) topological insulator (TI). We provide strong evidence derived from hydrogen etching on Sb2Te3 that large-area and well-ordered antimonene presents a 2D topological state. Delicate analysis with a scanning tunneling microscope of the evolutionary intermediates reveals that hydrogen etching on Sb2Te3 resulted in the formation of a large area of antimonene with a buckled structure. A topological state formed in the antimonene/Sb2Te3 heterostructure was confirmed with angle-resolved photoemission spectra and density-functional theory calculations; in particular, the Dirac point was located almost at the Fermi level. The results reveal that Dirac fermions are indeed realized at the interface of a 2D normal insulator (NI) and a 3D TI as a result of strong hybridization between antimonene and Sb2Te3. Our work demonstrates that the position of the Dirac point and the shape of the Dirac surface state can be tuned by varying the energy position of the NI valence band, which modifies the direction of the spin texture of Sb-BL/Sb2Te3 via varying the Fermi level. This topological phase in 2D-material engineering has generated a paradigm in that the topological proximity effect at the NI/TI interface has been realized, which demonstrates a way to create QSH systems in 2D-material TI heterostructures.

15.
Opt Express ; 18(9): 9570-9, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20588804

RESUMO

The 40-GHz rational harmonic mode-locking (RHML) and pulse-amplitude equalization of a semiconductor optical amplifier based fiber-ring laser (SOAFL) is demonstrated by the injection of a reshaped 10-GHz gain-switching FPLD pulse. A nonlinearly biased Mach-Zehnder modulator (MZM) is employed to detune the shape of the double-peak pulse before injecting the SOA, such that a pulse-amplitude equalized 4th-order RHML-SOAFL can be achieved by reshaping the SOA gain within one modulation period. An optical injection mode-locking model is constructed to simulate the compensation of uneven amplitudes between adjacent RHML pulse peaks before and after pulse-amplitude equalization. The indirect gain compensation technique greatly suppresses the clock amplitude jitter from 45% to 3.5% when achieving 4th-order RHML, and the amplitude fluctuation of sub-rational harmonic modulating envelope is attenuated by 45 dB. After pulse-amplitude equalization, the pulsewidth of the optical-injection RHML-SOAFL is 8 ps, which still obeys the trend predicted by the inverse square root of repetition rate. The phase noise contributed by the residual ASE noise of the RHML-SOAFL is significantly decreased from -84 to -90 dBc/Hz after initiating the pulse-amplitude equalization, corresponding to the timing jitter reduction from 0.5 to 0.28 ps.

16.
Opt Express ; 18(4): 3592-600, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389368

RESUMO

We comprehensively investigated the concentration effect of dispersed single-walled carbon nanotubes (SWCNTs) in polymer films for being a saturable absorber (SA) to stabilize the mode locking performance of the erbium-doped fiber laser (EDFL) pulse through the diagnosis of its nonlinear properties of SA. The measured modulation depth was from 1 to 4.5% as the thickness increased 18 to 265 microm. The full-width half-maximum (FWHM) of the stable mode-locked EDFL (MLEDFL) pulse decreased from 3.43 to 2.02 ps as the concentrations of SWCNTs SA increased 0.125 to 0.5 wt%. At constant concentration of 0.125 wt%, the similar pulse shortening effect of the MLEDFL was also observed when the FWHM decreased from 3.43 to 1.85 ps as the thickness of SWCNTs SA increased 8 to 100 microm. With an erbium-doped fiber length of 80 cm, the shortest pulse width of 1.85 ps were achieved at 1.56 microm with a repetition rate of 11.1 MHz and 0.2 mW of the output power under an output coupling ratio of 5%. An in-depth study on the stable mode-locked pulse formation employing SWCNTs SA, it is possible to fabricate the SWCNT films for use in high performance MLEDFL and utilization of many other low-cost nanodevices.


Assuntos
Lasers de Estado Sólido , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
17.
Nanoscale ; 12(32): 16956-16966, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32779683

RESUMO

Two-dimensional (2D) topological insulators (TIs) have attracted a lot of attention owing to their striking optical nonlinearity. However, the ultra-low saturable intensity (SI) of TIs resulting from the bulk conduction band limits their applications, such as in mode-locking solid-state lasers. In this work, through fabricating a graphene/Bi2Te3 heterojunction which combines monolayer graphene and a Bi2Te3 nanoplate, the optical nonlinearities are analyzed. Moreover, the thickness-dependent characteristics are also investigated by varying the thickness of the Bi2Te3 when synthesizing the heterojunctions. Furthermore, with the aid of the estimated junction electron escape time, a model of the photo-excited carrier-transfer mechanism is proposed and used to describe the phenomena of depression of ultra-low saturable absorption (SA) from the Bi2Te3 bulk band. The increased modulation depth of the graphene/Bi2Te3 heterojunction can accordingly be realized in more detail. In addition, a Q-switched solid-state laser operating at 1064 nm with heterojunction saturable absorbers is built up and characterized for validating the proposed model. The laser performance with varied Bi2Te3 thickness, such as pulse duration and repetition rate, agrees quite well with our proposed model. Our work demonstrates the functionality of optical nonlinear engineering by tuning the thickness of the graphene/Bi2Te3 heterojunction and demonstrates its potential for applications.

18.
Opt Express ; 17(2): 850-9, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158900

RESUMO

Optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated to equalize the peak intensity of pulses generating from the rational-harmonic-mode-locking (RHML) SOA based fiberized semiconductor laser. This is achieved by adjusting the temporal shape of the injected optical signal generated from a Mach-Zehnder intensity modulator, in which the DC biased level exceeding Vpi and the electrical pulse amplitude of 1.5Vpi are concurrently employed. Numerical simulation on the injected optical signal profile and the SOA gain during the inverse-optical-pulse injection induced gain modulation process are also demonstrated. After a peculiar inverse-optical-pulse injection, each pulse in the 5th-order RHML pulse-train experiences different gain from temporally varied SOA gain profile, leading the pulse peak to equalize one another with a minimum standard deviation of 2.5% on the peak intensity variation. The optimized 5th-order RHML pulse exhibits a signal-to-noise suppression ratio of 20 dB and a reduced variation on temporal spacing from 11 to 4 ps. The clock amplitude jitter is compress from 35.3% to 7.3%, which is less than the limitation up to 10% for 5th order RHML generation.

19.
Opt Express ; 17(6): 4806-14, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19293911

RESUMO

We propose an operation switchable ring-cavity erbium-doped fiber laser (EDFL) via intra-cavity polarization control. By using a semiconductor saturable absorber mirror in the EDFL cavity, stable Q-switching, Q-switched mode-locking, continuous-wave mode-locking, pulse splitting, and harmonic mode-locking pulses can be manipulated simply by detuning a polarization controller while keeping the pump power at the same level. All EDFL operation states can be obtained under the polarization angles detuning within 180 degrees. Continuous-wave mode-locking of EDFL with 800-fs pulsewidth repeated at 4 MHz has been obtained, for which the output pulse energy is 0.5 nJ and the peak power is 625 W. Interaction between solitons and the accompanied non-soliton component will lead to either pulse splitting or 5th-order harmonic mode-locking at repetition rate of 20 MHz.

20.
Chemistry ; 15(47): 13201-9, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19847830

RESUMO

Centrosymmetric furan-containing cyclophandienes 3 and 4, synthesized by our furan annulation protocol, have been shown to exhibit extraordinarily large Stokes shifts and second-order nonlinear optical beta values. The beta values for 3 and 4 measured at 1.32 mum are 208 and 530x10(-30) esu, respectively. The beta values of 3 and 4 are similar to those of respective cyclophenes 1 a and 7 in which strong hyperpoarizable interactions between two twisted pi-systems (oligoaryl and bridging double bond) might take place. Symmetry breaking due to the resonance contribution (cf. 2) and the unique structural features of 3 and 4 has been used to account for this unusual photophysical behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA