Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892434

RESUMO

Many different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis. The QD/lipid micelles (QDMs) were prepared using a simple self-assembly procedure and then conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for tumor targeting. As a therapeutic agent, Bcl2 siRNA-cholesterol conjugates were loaded on the surface of QDMs. The EGFR-directed QDMs containing Bcl2 siRNA, so-called immuno-QDM/siBcl2 (iQDM/siBcl2), exhibited the more effective delivery of QDs and siBcl2 to target human colorectal cancer cells in cultures as well as in mouse xenografts. The effective in vivo targeting of iQDM/siBcl2 resulted in a more enhanced therapeutic efficacy of siBcl2 to the target cancer in mice. Based on the results, anti-EGFR QDM capturing therapeutic siRNA could be suggested as an alternative modality for tumor-targeted theranosis.


Assuntos
Receptores ErbB , Proteínas Proto-Oncogênicas c-bcl-2 , Pontos Quânticos , RNA Interferente Pequeno , Pontos Quânticos/química , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , RNA Interferente Pequeno/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Nanopartículas/química , Lipídeos/química , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Micelas
2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338667

RESUMO

mRNA vaccines have emerged as a pivotal tool in combating COVID-19, offering an advanced approach to immunization. A key challenge with these vaccines is their need for extremely-low-temperature storage, which affects their stability and shelf life. Our research addresses this issue by enhancing the stability of mRNA vaccines through a novel cationic lipid, O,O'-dimyristyl-N-lysyl aspartate (DMKD). DMKD effectively binds with mRNA, improving vaccine stability. We also integrated phosphatidylserine (PS) into the formulation to boost immune response by promoting the uptake of these nanoparticles by immune cells. Our findings reveal that DMKD-PS nanoparticles maintain structural integrity under long-term refrigeration and effectively protect mRNA. When tested, these nanoparticles containing green fluorescent protein (GFP) mRNA outperformed other commercial lipid nanoparticles in protein expression, both in immune cells (RAW 264.7 mouse macrophage) and non-immune cells (CT26 mouse colorectal carcinoma cells). Importantly, in vivo studies show that DMKD-PS nanoparticles are safely eliminated from the body within 48 h. The results suggest that DMKD-PS nanoparticles present a promising alternative for mRNA vaccine delivery, enhancing both the stability and effectiveness of these vaccines.


Assuntos
Lipossomos , Nanopartículas , Vacinas , Animais , Camundongos , RNA Mensageiro/química , Vacinas de mRNA , Transfecção , Células Apresentadoras de Antígenos , Nanopartículas/química
3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768200

RESUMO

Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis and is associated with increased circulating glucocorticoid levels. Salvia plebeia R.Br. (SPR) has been used as herbal remedy for a variety of inflammatory diseases and has various biological actions such as antioxidant and anti-inflammatory activities. However, there are no reports on the effects of SPR and its bioactive components on muscle atrophy. Herein, we investigated the anti-atrophic effect of SPR and rosmarinic acid (RosA), a major compound of SPR, on dexamethasone (DEX)-induced skeletal muscle atrophy in C2C12 myotubes. Myotubes were treated with 10 µM DEX in the presence or absence of SPR or RosA at different concentrations for 24 h and subjected to immunocytochemistry, western blot, and measurements of ROS and ATP levels. SPR and RosA increased viability and inhibited protein degradation in DEX-treated C2C12 myotubes. In addition, RosA promoted the Akt/p70S6K/mTOR pathway and reduced ROS production, and apoptosis. Furthermore, the treatment of RosA significantly recovered SOD activity, autophagy activity, mitochondrial contents, and APT levels in DEX-treated myotubes. These findings suggest that SPR and RosA may provide protective effects against DEX-induced muscle atrophy and have promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.


Assuntos
Dexametasona , Fibras Musculares Esqueléticas , Humanos , Dexametasona/efeitos adversos , Dexametasona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Ácido Rosmarínico
4.
Arch Biochem Biophys ; 709: 108969, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34153297

RESUMO

Cancer is a second leading cause of death worldwide, and metastasis is the major cause of cancer-related mortality. The epithelial-mesenchymal transition (EMT), known as phenotypic change from epithelial cells to mesenchymal cells, is a crucial biological process during development. However, inappropriate activation of EMT contributes to tumor progression and promoting metastasis; therefore, inhibiting EMT is considered a promising strategy for developing drugs that can treat or prevent cancer. In the present study, we investigated the anti-cancer effect of bakuchiol (BC), a main component of Ulmus davidiana var. japonica, in human cancer cells using A549, HT29 and MCF7 cells. In MTT and colony forming assay, BC exerted cytotoxicity activity against cancer cells and inhibited proliferation of these cells. Anti-metastatic effects by BC were further confirmed by observing decreased migration and invasion in TGF-ß-induced cancer cells after BC treatment. Furthermore, BC treatment resulted in increase of E-cadherin expression and decrease of Snail level in Western blotting and immunofluorescence analysis, supporting its anti-metastatic activity. In addition, BC inhibited lung metastasis of tail vein injected human cancer cells in animal model. These findings suggest that BC inhibits migration and invasion of cancers by suppressing EMT and in vivo metastasis, thereby may be a potential therapeutic agent for treating cancers.


Assuntos
Antineoplásicos/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Fenóis/uso terapêutico , Ulmus/química , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Camundongos SCID , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Arch Biochem Biophys ; 687: 108384, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32343974

RESUMO

Epithelial mesenchymal transition (EMT) is a well-known and important step in metastasis and thus can be a key target in cancer treatment. Here, we tested the EMT inhibitory actions of Selaginella tamariscina and its active component, amentoflavone (AF). EMT was examined in vitro using wound-healing and invasion assays and by monitoring changes in the expression of the EMT-related proteins, E-cadherin, Snail, and Twist. Metastasis was examined in vivo using SCID mice injected with luciferase-labeled A549 cells. We confirmed that aqueous extracts of S. tamariscina (STE) and AF inhibited EMT in human cancer cell lines. We found that STE and AF at nontoxic concentrations exerted remarkable inhibitory effects on migration (wound healing assay) and invasion (Transwell assay) in tumor necrosis factor (TGF)-ß-treated cancer cells. Western blotting and immunofluorescence imaging show that AF treatment also restored E-cadherin expression in these cells compared to cells treated with TGF-ß only. Suppression of metastasis by AF was investigated by monitoring migration of tail-vein-injected, circulating A549-luc cells to the lungs in mice. After 3 wk, fewer nodules were observed in mice co-treated with AF compared with those treated with TGF-ß only. Our findings indicate that STE and AF are promising EMT inhibitors and, ultimately, potentially potent antitumor agents.


Assuntos
Antineoplásicos/uso terapêutico , Biflavonoides/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Selaginellaceae/química , Células A549 , Animais , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Biflavonoides/farmacologia , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Camundongos SCID , Proteínas Nucleares/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/metabolismo
6.
Small ; 14(40): e1802055, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30199137

RESUMO

While lipoplex (cationic lipid-nucleic acid complex)-mediated intracellular delivery is widely adopted in mammalian cell transfection, its transfection efficiency for suspension cells, e.g., lymphatic and hematopoietic cells, is reported at only ≈5% or even lower. Here, efficient and consistent lipoplex-mediated transfection is demonstrated for hard-to-transfect suspension cells via a single-cell, droplet-microfluidics approach. In these microdroplets, monodisperse lipoplexes for effective gene delivery are generated via chaotic mixing induced by the serpentine microchannel and co-confined with single cells. Moreover, the cell membrane permeability increases due to the shear stress exerted on the single cells when they pass through the droplet pinch-off junction. The transfection efficiency, examined by the delivery of the pcDNA3-EGFP plasmid, improves from ≈5% to ≈50% for all three tested suspension cell lines, i.e., K562, THP-1, Jurkat, and with significantly reduced cell-to-cell variation, compared to the bulk method. Efficient targeted knockout of the TP53BP1 gene for K562 cells via the CRISPR (clustered regularly interspaced short palindromic repeats)-CAS9 (CRISPR-associated nuclease 9) mechanism is also achieved using this platform. Lipoplex-mediated single-cell transfection via droplet microfluidics is expected to have broad applications in gene therapy and regenerative medicine by providing high transfection efficiency and low cell-to-cell variation for hard-to-transfect suspension cells.


Assuntos
Microfluídica/métodos , Transfecção/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Humanos , Células K562 , Medicina Regenerativa
7.
Nano Lett ; 16(9): 5533-41, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27383666

RESUMO

Alternative materials obtained from natural resources have recently garnered considerable attention as an innovative solution to bring unprecedented advances in various energy storage systems. Here, we present a new class of heterolayered nanomat-based hierarchical/asymmetric porous membrane with synergistically coupled chemical activity as a nanocellulose-mediated green material strategy to develop smart battery separator membranes far beyond their current state-of-the-art counterparts. This membrane consists of a terpyridine (TPY)-functionalized cellulose nanofibril (CNF) nanoporous thin mat as the top layer and an electrospun polyvinylpyrrolidone (PVP)/polyacrylonitrile (PAN) macroporous thick mat as the support layer. The hierarchical/asymmetric porous structure of the heterolayered nanomat is rationally designed with consideration of the trade-off between leakage current and ion transport rate. The TPY (to chelate Mn(2+) ions) and PVP (to capture hydrofluoric acid)-mediated chemical functionalities bring a synergistic coupling in suppressing Mn(2+)-induced adverse effects, eventually enabling a substantial improvement in the high-temperature cycling performance of cells.

8.
Electrophoresis ; 37(10): 1353-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26920999

RESUMO

Monodispersed lipid vesicles have been used as a drug delivery vehicle and a biochemical reactor. To generate monodispersed lipid vesicles in the nano- to micrometer size range, an extrusion step should be included in conventional hand-shaking method of lipid vesicle synthesis. In addition, lipid vesicles as a drug carrier still need to be improved to effectively encapsulate concentrated biomolecules such as cells, proteins, and target drugs. To overcome these limitations, this paper reports a new microfluidic platform for continuous synthesis of small-sized (∼10 µm) giant unilamellar vesicles (GUVs) containing quantum dots (QDs) as a nanosized model drug. To generate GUVs, we introduced an additional cross-flow to break vesicles into small size. 1,2 - dimyristoyl-sn-glycero - 3 - phosphocholine (DMPC) in an octanol-chloroform mixture was used in the construction of self-assembled membrane. Consequently, we have successfully demonstrated the fabrication of monodispersed GUVs with 7-12 µm diameter containing QDs. The proposed synthesis method of cell-sized GUVs would be highly desirable for applications such as multipurpose drug encapsulation and delivery.


Assuntos
Portadores de Fármacos/química , Microfluídica/métodos , Pontos Quânticos , Lipossomas Unilamelares/química , Dimiristoilfosfatidilcolina/química , Liberação Controlada de Fármacos , Dispositivos Lab-On-A-Chip , Lipídeos/química , Tamanho da Partícula
9.
Arch Virol ; 160(9): 2197-207, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26100403

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine causing high mortality rates in piglets. PEDV outbreaks have occurred continuously in most swine-producing Asian countries and have recently emerged in the United States, leading to large economic losses for both the Asian and US pig industries. The spike (S) protein of PEDV consists of the S1 and S2 domains, responsible for virus binding and fusion, respectively. The involvement of the S1 domain in specific high-affinity interactions with the cellular receptor and induction of neutralizing antibodies in the natural host makes it a logical target for the development of effective vaccines and therapeutics against PEDV. Passive immunization by oral administration of egg yolk antibodies (IgY) obtained from immunized chickens provides an alternative source of specific antibodies for the prevention and treatment of PEDV in newborn piglets. In this study, we produced an IgY against the PEDV S1 protein and investigated its immunoprophylactic effect in neonatal piglets. A codon-optimized PEDV S1 gene consisting of amino acid residues 25-749 was synthesized and used to establish a stable porcine cell line constitutively expressing a recombinant PEDV S1 protein containing the chicken immunoglobulin Fc fragment at its C-terminus. The purified recombinant S1 protein was found to mediate potent immune responses in immunized hens. We next tested the ability of oral passive immunization with anti-PEDV S1 IgY to protect piglets against PEDV. Specific chicken IgY against the S1 protein was orally administered to neonatal piglets, and their responses subsequent to a virulent PEDV challenge were monitored. The results showed that oral administration of anti-PEDV S1 IgY efficiently protects neonatal piglets against PEDV, suggesting its potential as a prophylactic or therapeutic agent against acute PEDV infection.


Assuntos
Anticorpos Antivirais/administração & dosagem , Infecções por Coronavirus/veterinária , Imunização Passiva/métodos , Imunoglobulinas/administração & dosagem , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Doenças dos Suínos/prevenção & controle , Administração Oral , Animais , Animais Recém-Nascidos , Quimioprevenção/métodos , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Intestino Delgado/patologia , Suínos , Resultado do Tratamento , Estados Unidos , Eliminação de Partículas Virais
10.
J Cosmet Laser Ther ; 17(1): 20-3, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25260051

RESUMO

BACKGROUND: Skin aging is accompanied by wrinkle formation. At some sites, such as the periorbital skin, this is a relatively early phenomenon. OBJECTIVE: We evaluated the anti-wrinkle effect of a preparation containing human growth factor and hyaluronic acid serum on periorbital wrinkles (crow's feet). MATERIALS AND METHODS: In total, 23 Korean women (age range: 39-59 years), who were not pregnant, nursing, or undergoing any concurrent therapy, were enrolled in this study. All the patients completed an 8-week trial of twice-daily application of human growth factor and hyaluronic acid serum on the entire face. Efficacy was based on a global photodamage score, photographs, and image analysis using replicas and visiometer analysis every 4 weeks. The standard wrinkle and roughness parameters used in assessing skin by visiometer were calculated and statistically analyzed. RESULTS: Periorbital wrinkles were significantly improved after treatment, with improvements noted both by physician's assessment and visiometer analysis. CONCLUSION: Topical application of human growth factor and hyaluronic acid was beneficial in reducing periorbital wrinkles.


Assuntos
Fármacos Dermatológicos/uso terapêutico , Ácido Hialurônico/uso terapêutico , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Envelhecimento da Pele/efeitos dos fármacos , Administração Cutânea , Adulto , Combinação de Medicamentos , Fator de Crescimento Epidérmico/uso terapêutico , Feminino , Fator 10 de Crescimento de Fibroblastos/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Humanos , Fator de Crescimento Insulin-Like I/uso terapêutico , Pessoa de Meia-Idade
11.
Skin Res Technol ; 20(2): 208-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24033822

RESUMO

BACKGROUND: Facial hyperpigmentation occurs in multiple conditions. In addition, many Asian women desire a lighter skin color. Thus, there is a need for the development of skin lightening agents, and niacinamide and tranexamic acid (TXA) are promising candidates. OBJECTIVE: To assess the effectiveness of a combination of niacinamide and TXA as a topical moisturizing formulation for treatment of irregular facial pigmentation. MATERIALS AND METHODS: A total of 42 Korean women (age range: 30-60 years) who were not pregnant, nursing, or undergoing any concurrent therapy were enrolled in this study for 8 weeks. Subjects used a twice-daily regimen of either a moisturizing cream containing 2% niacinamide + 2% TXA (test formulation; n = 21) or cream vehicles (vehicle control; n = 21) in addition to an assigned sunscreen each morning. Pigmentation was measured objectively using a mexameter and chromameter, in addition to physicians' assessment using clinical photographs. RESULTS: The niacinamide + TXA formulation regimen was significantly (P < 0.05) more effective than the vehicle control formulation regimen in reducing the appearance of pigmentation. CONCLUSION: A formulation containing the combination of niacinamide + TXA reduced the appearance of irregular pigmentation, providing an effect beyond that achieved with sunscreen.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Dermatoses Faciais/tratamento farmacológico , Dermatoses Faciais/patologia , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/patologia , Creme para a Pele/uso terapêutico , Ácido Tranexâmico/administração & dosagem , Administração Tópica , Adulto , Antifibrinolíticos/administração & dosagem , Fármacos Dermatológicos/administração & dosagem , Método Duplo-Cego , Combinação de Medicamentos , Emolientes/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Niacinamida/administração & dosagem , Resultado do Tratamento , Complexo Vitamínico B/administração & dosagem
12.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38675422

RESUMO

Lycii Radicis Cortex (LRC) is a traditional medicine in East Asia with various beneficial effects, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and anti-depressant properties. However, its potential effects on skeletal muscle atrophy have not been studied. In this study, the protective effects of LRC extract (LRCE) on dexamethasone (DEX)-induced muscle atrophy were investigated in C2C12 myotubes and mice. We evaluated the effect of LRCE on improving muscle atrophy using a variety of methods, including immunofluorescence staining, quantitative polymerase chain reaction (qPCR), Western blot, measurements of oxidative stress, apoptosis, ATP levels, and muscle tissue analysis. The results showed that LRCE improved myotube diameter, fusion index, superoxide dismutase (SOD) activity, mitochondrial content, ATP levels, expression of myogenin and myosin heavy chain (MHC), and reduced reactive oxygen species (ROS) production in dexamethasone-induced C2C12 myotubes. LRCE also enhanced protein synthesis and reduced protein degradation in the myotubes. In mice treated with DEX, LRCE restored calf thickness, decreased mRNA levels of muscle-specific RING finger protein 1 (MuRF1) and atrogin-1, and increased insulin-like growth factor 1 (IGF-1) mRNA level. Moreover, LRCE also repaired gastrocnemius muscle atrophy caused by DEX. Although human studies are not available, various preclinical studies have identified potential protective effects of LRCE against muscle atrophy, suggesting that it could be utilized in the prevention and treatment of muscle atrophy.

13.
Polymers (Basel) ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732649

RESUMO

Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of Voc were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and Isc outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 µA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38935928

RESUMO

The commercialization of 3D heterogeneous integration through hybrid bonding has accelerated, and accordingly, Cu-polymer bonding has gained significant attention as a means of overcoming the limitations of conventional Cu-SiO2 hybrid bonding, offering high compatibility with other fabrication processes. Polymers offer robust bonding strength and a low dielectric constant, enabling high-speed signal transmission with high reliability, but suffer from low thermomechanical stability. Thermomechanical stability of polymers was not achieved previously because of thermal degradation and unstable anchoring. To overcome these limitations, wafer-scale Cu-polymer bonding via N-heterocyclic carbene (NHC) nanolayers was presented for 3D heterogeneous integration, affording ultrastable packing density, crystallinity, and thermal properties. NHC nanolayers were deposited on copper electrodes via electrochemical deposition, and wafer-scale 3D heterogeneous integration was achieved by adhesive bonding at 170 °C for 1 min. Ultrastable conductivity and thermomechanical properties were observed by the spatial mapping of conductivity, work function, and force-distance curves. With regard to the characterization of NHC nanolayers, low-temperature bonding, robust corrosion inhibition, enhanced electrical conductivity, back-end-of-line process compatibility, and fabrication process reduction, NHC Cu/polymer bonding provides versatile advances in 3D heterogeneous integration, indicating that NHC Cu/polymer bonding can be utilized as a platform for future 3D vertical chip architectures.

15.
Anal Chem ; 85(18): 8749-56, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24007509

RESUMO

Microalgae, a group of microorganisms that grow using sunlight as the sole energy source and carbon dioxide as an only carbon source, have been considered as a feedstock of choice for the production of biofuels such as biodiesel. To explore the economic feasibility of such application, however, many technical hurdles must first be overcome; the selection and/or screening of competent species are some of the most important and yet challenging tasks. To greatly accelerate this rather slow and laborious step, we developed a droplet-based microfluidic system that uses alginate hydrogel microcapsules with a mean diameter of 26 µm, each of which is able to encapsulate a single microalgal cell. This novel device was successfully demonstrated using three microalgae species, namely, Chlorella vulgaris , Chlamydomonas sp., and Botryococcus braunii . In situ analysis of the lipid content of individual microalgal cells by nondestructive fluorescence staining using BODIPY (4,4-difluoro-1,3,5,7,-tetramethyl-4-bora-3a,4a-diaza-s-indacene) was possible. In all cases, we confirmed that the lipid content of microalgal species in alginate hydrogel microcapsules was comparable to that of free-living cells. Stochastic heterogeneity in the lipid content was verified under a highly viable physiological condition, implying that other analyses were possible after the determination of lipid content. Furthermore, the designed microwell arrays enabled us to distinguish the BODIPY fluorescence response of a single live alga within the microcapsules.

16.
Electrophoresis ; 34(22-23): 3119-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24105848

RESUMO

Microparticle adsorption on microchannel walls occurs frequently due to nonspecific interactions, decreasing operational performance in pressure-driven microfluidic systems. However, it is essential for delicate manipulation of microparticles or cells to maintain smooth fluid traffic. Here, we report a novel microparticle injection technique, which prevents particle loss, assisted by sample injection along the direction of fluid flow. Sample fluids, including microparticles, mammalian (U937), and green algae (Chlorella vulgaris) cells, were injected directly via a through hole drilled in the lateral direction, resulting in a significant reduction in microparticle attachment. For digital microfluidic application, the proposed regime achieved a twofold enhancement of single-cell encapsulation compared to the conventional encapsulation rate, based on a Poisson distribution, by reducing the number of empty droplets. This novel interconnection method can be straightforwardly integrated as a microparticle or cell injection component in integrated microfluidic systems.


Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Adsorção , Células Cultivadas , Chlorella vulgaris/citologia , Dimetilpolisiloxanos , Desenho de Equipamento , Humanos , Nylons , Células U937
17.
Biol Pharm Bull ; 36(5): 772-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23649335

RESUMO

Saururus chinensis has been used in folk medicine in Korea for the treatment of edema, jaundice, gonorrhea, and several inflammatory diseases. Saururi chinensis extracts (SCE) have demonstrated anti-inflammatory and anti-oxidant activities, as well as anti-asthmatic, antihypertensive, anti-angiogenic, and therapeutic activities for atopic dermatitis. However, the inhibitory activity of SCE on the melanogenesis signaling pathway is not completely understood. This study examined the effects of SCE on the melanogenesis signaling pathway activated by α-melanocyte-stimulating hormone (α-MSH). We found that SCE inhibited melanin production in a dose-dependent manner without causing cytotoxicity in B16F10 cells. Interestingly, SCE decreased α-MSH-induced tyrosinase activity in B16F10 cells but did not inhibit tyrosinase activity under cell-free conditions. The results of this study indicate that SCE may reduce pigmentation by way of an indirect, nonenzymatic mechanism. We also found that SCE decreased α-MSH-induced microphthalmia-associated transcription factor (MITF) and tyrosinase expression and induced the activation of extracellular signal-regulated kinase (ERK). These results suggest that the depigmenting effect of SCE may result from downregulation of MITF and tyrosinase expression due to increased ERK activity. Thus, our results provide evidence that SCE might be useful as a potential skin-whitening agent.


Assuntos
Melaninas/antagonistas & inibidores , Extratos Vegetais/farmacologia , Saururaceae , Preparações Clareadoras de Pele/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fosforilação
18.
J Nanosci Nanotechnol ; 13(2): 1484-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646666

RESUMO

Recently, photophysical property with fluorescence function has been attracted and studied because there are promising potentials in academic and industrial applications. Organic materials having fluorescence effect, especially fluorochromism can be utilized in the sensing or probing with absorption/emission changes. Herein, the prepared dye chromophore can be changed to their optical properties with polar/non-polar environmental media. In this work, we synthesized a new fluorochromism dye, namely 5-[2-(4-diphenylamino-phenyl)-vinyl]-2,2-dimethyl-[1,3]dioxane-4,6-dione using 3-formyl triphenylamine and 2,2-dimethyl-[1,3]dioxane-4,6-dione. We investigated absorption and fluorescent emission in various solvent media. Furthermore, cyclovoltammogram was used to determine energy levels of HOMO/LUMO from their redox onset potentials. Measured energy levels of HOMO/LUMO were compared with the results of simulated computational calculation.

19.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839675

RESUMO

Triple-negative breast cancer (TNBC) cells do not contain various receptors for targeted treatment, a reason behind the poor prognosis of this disease. In this study, biocompatible theranostic erythrocyte-derived nanoparticles (EDNs) were developed and evaluated for effective early diagnosis and treatment of TNBC. The anti-cancer drug, doxorubicin (DOX), was encapsulated into the EDNs and diagnostic quantum dots (QDs) were incorporated into the lipid bilayers of EDNs for tumor bio-imaging. Then, anti-epidermal growth factor receptor (EGFR) antibody molecules were conjugated to the surface of EDNs for TNBC targeting (iEDNs). According to the confocal microscopic analyses and biodistribution assay, iEDNs showed a higher accumulation in EGFR-positive MDA-MB-231 cancers in vitro as well as in vivo, compared to untargeted EDNs. iEDNs containing doxorubicin (iEDNs-DOX) showed a stronger inhibition of target tumor growth than untargeted ones. The resulting anti-EGFR iEDNs exhibited strong biocompatibility, prolonged blood circulation, and efficient targeting of TNBC in mice. Therefore, iEDNs may be used as potential TNBC-targeted co-delivery systems for therapeutics and diagnostics.

20.
Polymers (Basel) ; 14(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267851

RESUMO

Recently, the automobile industry has demanded weight reduction, so research on materials is being actively conducted. Among this research, carbon fiber-reinforced composite materials are being studied a lot in the automobile industry due to their excellent mechanical properties, chemical resistance, and heat resistance. However, carbon fiber-reinforced composite materials have disadvantages, in that they are not free from color selection, and have weak interfacial bonding strength. In this study, a colored epoxy resin was prepared by mixing epoxy-which is a thermosetting resin according to the pigment concentration (0.1, 0.3, 0.5, 1.0 wt%)-and curing shrinkage. Thermal expansion characteristics were analyzed and the concentration of 0.5 wt% pigment showed the lowest shrinkage and thermal expansion characteristics. In addition, to measure the interfacial shear strength (IFSS) of the carbon fiber and the colored epoxy resin, the IFSS was obtained by performing a microdroplet debonding test, and the strength of the pigment concentration of 0.5 wt% was reduced to a relatively low level. Through these experiments, it was determined that an epoxy resin in which 0.5 wt% pigment is mixed is the optimal condition. Finally, using the composite material modeling software (Digimat 2020.0), the representative volume element (RVE) of the meso-scale was set, and interfacial properties of carbon fibers and colored epoxy resins were analyzed by interworking with general-purpose finite element analysis software (Abaqus CAE).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA