Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 158: 16-26, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134532

RESUMO

OBJECTIVE: This study aims to investigate the potential of direct cortical stimulation (DCS) to modulate tactile categorization and decision-making, as well as to identify the specific locations where these cognitive functions occur. METHODS: We analyzed behavioral changes in three epilepsy patients with implanted electrodes using electrocorticography (ECoG) and a vibrotactile discrimination task. DCS was applied to investigate its impact on tactile categorization and decision-making processes. We determined the precise location of the electrodes where each cognitive function was modulated. RESULTS: This functional discrimination was related with gamma band activity from ECoG. DCS selectively affected either tactile categorization or decision-making processes. Tactile categorization was modulated by stimulating the rostral part of the supramarginal gyrus, while decision-making was modulated by stimulating the caudal part. CONCLUSIONS: DCS can enhance cognitive processes and map brain regions responsible for tactile categorization and decision-making within the supramarginal gyrus. This study also demonstrates that DCS and the gamma activity of ECoG can concordantly identify the detailed brain mapping in a tactile process compared to other functional neuroimaging. SIGNIFICANCE: The combination of DCS and ECoG gamma activity provides a more nuanced and detailed understanding of brain function than traditional neuroimaging techniques alone.


Assuntos
Encéfalo , Eletrocorticografia , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Lobo Parietal , Eletrodos Implantados
2.
Cortex ; 171: 383-396, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101274

RESUMO

From sensory input to motor action, encoded sensory features flow sequentially along cortical networks for decision-making. Despite numerous studies probing the decision-making process, the subprocess that compares encoded sensory features before making a decision has not been fully elucidated in humans. In this study, we investigated sensory feature comparison by presenting two different tasks (a discrimination task, in which participants made decisions by comparing two sequential tactile stimuli; and a detection task, in which participants responded to the second tactile stimulus in two sequential stimuli) to epilepsy patients while recording electrocorticography (ECoG). By comparing tactile-specific gamma band (30-200 Hz) power between the two tasks, the decision-making process was divided into three subprocesses-categorization, comparison, and decision-consistent with a previous study (Heekeren et al., 2004). These subprocesses occurred sequentially in the dorsolateral prefrontal cortex, premotor cortex, secondary somatosensory cortex, and parietal lobe. Gamma power showed two different patterns of correlation with response time. In the inferior parietal lobule (IPL), there was a negative correlation. This means that as gamma power increased, response time decreased. In the secondary somatosensory cortex (S2), there was a positive correlation. Here, as gamma power increased, response time also increased. These results indicate that the IPL and S2 encode tactile feature comparison differently. Our connectivity analysis showed that the S2 transmitted tactile information to the IPL. Our findings suggest that multiple areas in the parietal lobe encode sensory feature comparison differently before making a decision.


Assuntos
Córtex Motor , Percepção do Tato , Humanos , Tato/fisiologia , Encéfalo , Percepção do Tato/fisiologia , Tempo de Reação/fisiologia , Córtex Motor/fisiologia , Mapeamento Encefálico/métodos , Córtex Somatossensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA