Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(10): 6045-50, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25893445

RESUMO

Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.


Assuntos
Gases/química , Cloreto de Sódio/química , Hexafluoreto de Enxofre/química , Recuperação e Remediação Ambiental , Cinética , Análise Espectral Raman , Termodinâmica , Purificação da Água , Difração de Raios X
2.
Environ Sci Technol ; 46(7): 4184-90, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22380606

RESUMO

Landfill gas (LFG), which is primarily composed of CH(4), CO(2), and N(2), is produced from the anaerobic digestion of organic materials. To investigate the feasibility of the storage and transportation of LFG via the formation of hydrate, we observed the phase equilibrium behavior of CO(2)-CH(4)-N(2) mixture hydrates. When the specific molar ratio of CO(2)/CH(4) was 40/55, the equilibrium dissociation pressures were gradually shifted to higher pressures and lower temperatures as the mole fraction of N(2) increased. X-ray diffraction revealed that the CO(2)-CH(4)-N(2) mixture hydrate prepared from the CO(2)/CH(4)/N(2) (40/55/5) gas mixture formed a structure I clathrate hydrate. A combination of Raman and solid-state (13)C NMR measurements provided detailed information regarding the cage occupancy of gas molecules trapped in the hydrate frameworks. The gas storage capacity of LFG hydrates was estimated from the experimental results for the hydrate formations under two-phase equilibrium conditions. We also confirmed that trace amounts of nonmethane organic compounds do not affect the cage occupancy of gas molecules or the thermodynamic stability of LFG hydrates.


Assuntos
Dióxido de Carbono/análise , Metano/análise , Nitrogênio/análise , Eliminação de Resíduos , Análise Espectral Raman/métodos , Água/química , Carbono/análise , Cinética , Espectroscopia de Ressonância Magnética , Pressão , Termodinâmica , Difração de Raios X
3.
J Environ Sci (China) ; 24(3): 494-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655364

RESUMO

Aqueous ammonia (NH3) solution can be used as an alternative absorption for the control of CO2 emitted from flue gases due to its high absorption capacity, fast absorption rate and low corrosion problem. The emission of CO2 from iron and steel plants requires much attention, as they are higher than those emitted from power plants at a single point source. In the present work, low concentration ammonia liquor, 9 wt.%, was used with various additives to obtain the kinetic properties using the blast furnace gas model. Although a solution with a high ammonia concentration enables high CO2 absorption efficiency, ammonium ions are lost as ammonia vapor, resulting in reduced CO2 absorption due to the lower concentration of the ammonia absorbent. To decrease the vaporization of ammonia, ethylene glycol, glycerol and glycine, which contain more than one hydroxyl radical, were chosen. The experiments were conducted at 313 K similar to the CO2 absorption conditions for the blast furnace gas model.


Assuntos
Amônia/química , Dióxido de Carbono/química , Etilenoglicol/química , Glicerol/química , Glicina/química , Poluentes Atmosféricos/química , Volatilização
4.
Environ Sci Technol ; 44(16): 6117-22, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20704207

RESUMO

This study aims to examine the thermodynamic feasibility of separating sulfur hexafluoride (SF(6)), which is widely used in various industrial fields and is one of the most potent greenhouse gases, from gas mixtures using gas hydrate formation. The key process variables of hydrate phase equilibria, pressure-composition diagram, formation kinetics, and structure identification of the mixed gas hydrates, were closely investigated to verify the overall concept of this hydrate-based SF(6) separation process. The three-phase equilibria of hydrate (H), liquid water (L(W)), and vapor (V) for the binary SF(6) + water mixture and for the ternary N(2) + SF(6) + water mixtures with various SF(6) vapor compositions (10, 30, 50, and 70%) were experimentally measured to determine the stability regions and formation conditions of pure and mixed hydrates. The pressure-composition diagram at two different temperatures of 276.15 and 281.15 K was obtained to investigate the actual SF(6) separation efficiency. The vapor phase composition change was monitored during gas hydrate formation to confirm the formation pattern and time needed to reach a state of equilibrium. Furthermore, the structure of the mixed N(2) + SF(6) hydrate was confirmed to be structure II via Raman spectroscopy. Through close examination of the overall experimental results, it was clearly verified that highly concentrated SF(6) can be separated from gas mixtures at mild temperatures and low pressure conditions.


Assuntos
Hexafluoreto de Enxofre/isolamento & purificação , Água/química , Nitrogênio/química , Transição de Fase , Pressão , Análise Espectral Raman , Temperatura , Volatilização
5.
Environ Health Toxicol ; 27: e2012012, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22639739

RESUMO

OBJECTIVES: The aim of this study was to identify the health and environmental risk factors of air contaminants that influence environmental and respiratory diseases in Gyeongju, Pohang and Ulsan in South Korea, with a focus on volatile organic compounds (VOCs). METHODS: Samples were collected by instantaneous negative pressure by opening the injection valve in the canister at a fixed height of 1 to 1.5 m. The sample that was condensed in -150℃ was heated to 180℃ in sample pre-concentration trap using a 6-port switching valve and it was injected to a gas chromatography column. The injection quantity of samples was precisely controlled using an electronic flow controller equipped in the gas chromatography-mass spectrometer. RESULTS: The quantity of the VOC emissions in the industrial area was 1.5 to 2 times higher than that in the non-industrial area. With regards to the aromatic hydrocarbons, toluene was detected at the highest level of 22.01 ppb in Ulsan, and chloroform was the halogenated hydrocarbons with the highest level of 10.19 ppb in Pohang. The emission of toluene was shown to be very important, as it accounted for more than 30% of the total aromatic hydrocarbon concentration. CONCLUSIONS: It was considered that benzene in terms of the cancer-causing grade standard, toluene in terms of the emission quantity, and chloroform and styrene in terms of their grades and emission quantities should be selected for priority measurement substances.

6.
Org Lett ; 12(11): 2634-7, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20446657

RESUMO

A colorimetric anion receptor based on an indole scaffold has been synthesized by incorporating an azobenzene chromophore to the 5-position of indole. The receptor binds anions by hydrogen bonds which are effectively transmitted through resonance to the chromophore to give rise to color changes. The cyanide ion induced a pronounced color change from light yellow to reddish orange, but less intense or negligible changes were observed with the other anions examined here.


Assuntos
Compostos Azo/síntese química , Indóis/síntese química , Ânions/química , Compostos Azo/química , Colorimetria , Indóis/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA