Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 94: 129461, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652099

RESUMO

Tryptophan hydroxylase 1 (TPH1) has emerged as a target for the treatment of metabolic diseases including obesity and fatty liver disease. A series of xanthine derivatives were synthesized and evaluated for their TPH1 inhibition. Among the synthesized compounds, compound 40 showed good in vitro activity and liver microsomal stability. Docking studies revealed that compound 40 showed better binding to TPH1 via key intermolecular interactions involving the xanthine scaffold, imidazo-thiazolyl ring, and hydroxyl-containing phenacyl moiety. In addition, compound 40 effectively suppressed the adipocyte differentiation of 3 T3-L1 cells.


Assuntos
Alcaloides , Hepatopatia Gordurosa não Alcoólica , Humanos , Diuréticos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Triptofano Hidroxilase/antagonistas & inibidores , Xantinas/química , Xantinas/farmacologia
2.
Eur J Med Chem ; 277: 116764, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39180945

RESUMO

Motile cilia are crucial for maintaining healthy bodily functions by facilitating fluid transport and removing foreign substances or debris from the body. The dysfunction of motile cilia leads to ciliopathy. In particular, damage to the motile cilia of the airways can cause or worsen respiratory disease, making it an attractive target for therapeutic interventions. However, there are no treatments to induce motile ciliogenesis. Forkhead box transcription factor J1 (FOXJ1), the master regulator, has been implicated in motile cilia formation. Mice lacking the Foxj1 gene show loss of axoneme, a key component of cilia, that further highlights the importance of FOXJ1 in motile cilia formation. This prompted us to identify new small molecules that could induce motile ciliogenesis. A phenotype-based high-throughput screening (HTS) in a Tg(foxj1a:eGFP) zebrafish model was performed and a novel hit compound was identified. Among the synthesized compounds, compound 16c effectively enhanced motile ciliogenesis in a transgenic zebrafish model. To further test the efficacy of compound 16c on a mammalian airway system consisting of multiciliated cells (MCCs), ex vivo mice tracheal epithelial cell culture was adopted under an air-liquid interface system (ALI). Compound 16c significantly increased the number of MCCs by enhancing motile ciliogenesis. In addition, compound 16c exhibited good liver microsomal stability, in vivo PK profiles with AUC, and oral bioavailability. There was no significant inhibition of CYP and hERG, and no cell cytotoxicity was shown. In an elastase-induced COPD (chronic obstructive pulmonary disease) mouse model, compound 16c effectively prevented the development and onset of COPD. Taken together, compound 16c has great promise as a therapeutic agent for treating and alleviating motile ciliopathies.

3.
Biomedicines ; 8(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917017

RESUMO

Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can target microtubules by specifically acting on cancer cells only. In this study, we identified chemicals that can act as anticancer agents by specifically binding to acetylated microtubules, which are predominant in triple-negative breast cancer (TNBC). The chemical compounds disrupted acetylated microtubule lattices by interfering with microtubule access to alpha-tubulin acetyltransferase 1 (αTAT1), a major acetyltransferase of microtubules, resulting in the increased apoptotic cell death of MDA-MB-231 cells (a TNBC cell line) compared with other cells, such as MCF-10A and MCF-7, which lack microtubule acetylation. Moreover, mouse xenograft experiments showed that treatment with the chemical compounds markedly reduced tumor growth progression. Taken together, the newly identified chemical compounds can be selective for acetylated microtubules and act as potential therapeutic agents against microtubule acetylation enrichment in TNBC.

4.
Eur J Med Chem ; 101: 716-35, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26218650

RESUMO

We have developed a series of adamantane carboxylic acid derivatives exhibiting potent diacylglycerol acyltransferase 1 (DGAT1) inhibitory activities. Optimization of the series led to the discovery of E-adamantane carboxylic acid compound 43c, which showed excellent in vitro activity with an IC50 value of 5 nM against human and mouse DGAT1, also good druggability as well as microsomal stability and safety profiles such as hERG, CYP and cytotoxicity. Compound 43c significantly reduced plasma triglyceride levels in vivo (in rodents and zebrafish) and also showed bodyweight gain reduction and glucose area under curve (AUC) lowering efficacy in diet-induced obesity (DIO) mice.


Assuntos
Adamantano/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Obesidade/tratamento farmacológico , Adamantano/química , Adamantano/farmacologia , Animais , Diabetes Mellitus Experimental/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Obesidade/enzimologia , Relação Estrutura-Atividade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA