Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 61, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869021

RESUMO

Display form factors such as size and shape have been conventionally determined in consideration of usability and portability. The recent trends requiring wearability and convergence of various smart devices demand innovations in display form factors to realize deformability and large screens. Expandable displays that are foldable, multi-foldable, slidable, or rollable have been commercialized or on the edge of product launches. Beyond such two-dimensional (2D) expansion of displays, efforts have been made to develop three dimensional (3D) free-form displays that can be stretched and crumpled for use in realistic tactile sensation, artificial skin for robots, and on-skin or implantable displays. This review article analyzes the current state of the 2D and 3D deformable displays and discusses the technological challenges to be achieved for industrial commercialization.

2.
J Nanosci Nanotechnol ; 21(7): 3923-3928, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715718

RESUMO

We investigate the effect of a semiconducting organic buffer layer (SOBL) on the injection and transport of charges in organic field-effect transistors (OFETs). Here, two different injection barriers at the source/organic semiconductor interface are respectively studied with the aid of a numerical simulation: one is intermediate (0.4 eV), and the other is large energy barriers (0.6 eV). The introduction of nanostructure buffer layer, or SOBL, exhibits the decrease of potential loss at the contact interfaces, improving the electrical performance of the OFETs. It is also found that the energy level as well as the mobility of the SOBL plays an important role in determining the injection properties at the metal/organic hetero-interfaces and thus improving the device performance. Our systematic investigation on the injection barrier by the introduction of the nanostructure buffer layer will provide a useful guideline for the fabrication of high-performance FETs with molecular semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA