Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell Biol Toxicol ; 39(4): 1677-1696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36163569

RESUMO

The activation of receptor-interacting protein kinase 1 (RIPK1) by death-inducing signaling complex (DISC) formation is essential for triggering the necroptotic mode of cell death under apoptosis-deficient conditions. Thus, targeting the induction of necroptosis by modulating RIPK1 activity could be an effective strategy to bypass apoptosis resistance in certain types of cancer. In this study, we screened a series of arborinane triterpenoids purified from Rubia philippinesis and identified rubiarbonol B (Ru-B) as a potent caspase-8 activator that induces DISC-mediated apoptosis in multiple types of cancer cells. However, in RIPK3-expressing human colorectal cancer (CRC) cells, the pharmacological or genetic inhibition of caspase-8 shifted the mode of cell death by Ru-B from apoptosis to necroptosis though upregulation of RIPK1 phosphorylation. Conversely, Ru-B-induced cell death was almost completely abrogated by RIPK1 deficiency. The enhanced RIPK1 phosphorylation and necroptosis triggered by Ru-B treatment occurred independently of tumor necrosis factor receptor signaling and was mediated by the production of reactive oxygen species via NADPH oxidase 1 in CRC cells. Thus, we propose Ru-B as a novel anticancer agent that activates RIPK1-dependent cell death via ROS production, and suggest its potential as a novel necroptosis-targeting compound in apoptosis-resistant CRC.


Assuntos
Apoptose , Necroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Morte Celular , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/farmacologia
2.
J Nanobiotechnology ; 20(1): 125, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264192

RESUMO

BACKGROUND: Fabry disease (FD) is a lysosome storage disease (LSD) characterized by significantly reduced intracellular autophagy function. This contributes to the progression of intracellular pathologic signaling and can lead to organ injury. Phospholipid-polyethyleneglycol-capped Ceria-Zirconia antioxidant nanoparticles (PEG-CZNPs) have been reported to enhance autophagy flux. We analyzed whether they suppress globotriaosylceramide (Gb3) accumulation by enhancing autophagy flux and thereby attenuate kidney injury in both cellular and animal models of FD. RESULTS: Gb3 was significantly increased in cultured human renal proximal tubular epithelial cells (HK-2) and human podocytes following the siRNA silencing of α galactosidase A (α-GLA). PEG-CZNPs effectively reduced the intracellular accumulation of Gb3 in both cell models of FD and improved both intracellular inflammation and apoptosis in the HK-2 cell model of FD. Moreover these particles attenuated pro fibrotic cytokines in the human podocyte model of FD. This effect was revealed through an improvement of the intracellular autophagy flux function and a reduction in reactive oxygen species (ROS). An FD animal model was generated in which 4-week-old male B6;129-Glatm1Kul/J mice were treated for 8 weeks with 10 mg/kg of PEG-CZNPs (twice weekly via intraperitoneal injection). Gb3 levels were reduced in the kidney tissues of these animals, and their podocyte characteristics and autophagy flux functions were preserved. CONCLUSIONS: PEG-CZNPs alleviate FD associated kidney injury by enhancing autophagy function and thus provide a foundation for the development of new drugs to treat of storage disease.


Assuntos
Doença de Fabry , Nanopartículas , Animais , Autofagia , Modelos Animais de Doenças , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Doença de Fabry/patologia , Rim/patologia , Masculino , Camundongos , Triexosilceramidas , Zircônio
3.
BMC Neurol ; 21(1): 91, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33632142

RESUMO

BACKGROUND: Sex hormones may be associated with a higher incidence of ischemic stroke or stroke-related events. In observational studies, lower testosterone concentrations are associated with infirmity, vascular disease, and adverse cardiovascular risk factors. Currently, female sexual hormones are considered neuroprotective agents. The purpose of this study was to assess the role of sex hormones and the ratio of estradiol/testosterone (E/T) in patients with acute ischemic stroke (AIS). METHODS: Between January 2011 and December 2016, 146 male patients with AIS and 152 age- and sex-matched control subjects were included in this study. Sex hormones, including estradiol, progesterone, and testosterone, were evaluated in the AIS patient and control groups. We analyzed the clinical and physiological levels of sex hormones and hormone ratios in these patients. RESULTS: The E/T ratio was significantly elevated among patients in the stroke group compared to those in the control group (P = 0.001). Categorization of data into tertiles revealed that patients with the highest E/T ratio were more likely to have AIS [odds ratio (OR) 3.084; 95% Confidence interval (CI): 1.616-5.886; P < 0.001) compared with those in the first tertile. The E/T ratio was also an independent unfavorable outcome predictor with an adjusted OR of 1.167 (95% CI: 1.053-1.294; P = 0.003). CONCLUSIONS: These findings support the hypothesis that increased estradiol and reduced testosterone levels are associated with AIS in men.


Assuntos
Estradiol/sangue , AVC Isquêmico/sangue , Testosterona/sangue , Idoso , Humanos , Incidência , AVC Isquêmico/epidemiologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Estudos Prospectivos
4.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065317

RESUMO

Lysophosphatidic acid (LPA), a bioactive lipid produced extracellularly by autotaxin (ATX), has been known to induce various pathophysiological events, including cancer cell invasion and metastasis. Discoidin domain receptor 2 (DDR2) expression is upregulated in ovarian cancer tissues, and is closely associated with poor clinical outcomes in ovarian cancer patients. In the present study, we determined a critical role and signaling cascade for the expression of DDR2 in LPA-induced ovarian cancer cell invasion. We also found ectopic expression of ATX or stimulation of ovarian cancer cells with LPA-induced DDR2 expression. However, the silencing of DDR2 expression significantly inhibited ATX- and LPA-induced ovarian cancer cell invasion. In addition, treatment of the cells with pharmacological inhibitors of phosphoinositide 3-kinase (PI3K), Akt, and mTOR abrogated LPA-induced DDR2 expression. Moreover, we observed that HIF-1α, located downstream of the mTOR, is implicated in LPA-induced DDR2 expression and ovarian cancer cell invasion. Finally, we provide evidence that LPA-induced HIF-1α expression mediates Twist1 expression to upregulate DDR2 expression. Collectively, the present study demonstrates that ATX, and thereby LPA, induces DDR2 expression through the activation of the PI3K/Akt/mTOR/HIF-1α/Twist1 signaling axes, aggravating ovarian cancer cell invasion.


Assuntos
Receptor com Domínio Discoidina 2/metabolismo , Lisofosfolipídeos/farmacologia , Neoplasias Ovarianas/induzido quimicamente , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
5.
J Antimicrob Chemother ; 73(4): 962-972, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329393

RESUMO

Background: Colistin (polymyxin E) is an important constituent of the polymyxin class of cationic polypeptide antibiotics. Intrarenal oxidative stress can contribute to colistin-induced nephrotoxicity. Nicotinamide adenine dinucleotide 3-phosphate oxidases (Noxs) are important sources of reactive oxygen species. Among the various types of Noxs, Nox4 is predominantly expressed in the kidney. Objectives: We investigated the role of Nox4 and benefit of Nox4 inhibition in colistin-induced acute kidney injury using in vivo and in vitro models. Methods: Human proximal tubular epithelial (HK-2) cells were treated with colistin with or without NOX4 knockdown, or GKT137831 (most specific Nox1/4 inhibitor). Effects of Nox4 inhibition on colistin-induced acute kidney injury model in Sprague-Dawley rats were examined. Results: Nox4 expression in HK-2 cells significantly increased following colistin exposure. SB4315432 (transforming growth factor-ß1 receptor I inhibitor) significantly inhibited Nox4 expression in HK-2 cells. Knockdown of NOX4 transcription reduced reactive oxygen species production, lowered the levels of pro-inflammatory markers (notably mitogen-activated protein kinases) implicated in colistin-induced nephrotoxicity and attenuated apoptosis by altering Bax and caspase 3/7 activity. Pretreatment with GKT137831 replicated these effects mediated by downregulation of mitogen-activated protein kinase activities. In a rat colistin-induced acute kidney injury model, administration of GKT137831 resulted in attenuated colistin-induced acute kidney injury as indicated by attenuated impairment of glomerulus function, preserved renal structures, reduced expression of 8-hydroxyguanosine and fewer apoptotic cells. Conclusions: Collectively, these findings identify Nox4 as a key source of reactive oxygen species responsible for kidney injury in colistin-induced nephrotoxicity and highlight a novel potential way to treat drug-related nephrotoxicity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Antibacterianos/efeitos adversos , Colistina/efeitos adversos , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Humanos , Modelos Biológicos , Ratos Sprague-Dawley
6.
Mol Carcinog ; 55(12): 1915-1926, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26586336

RESUMO

MicroRNAs (miRNAs) are recognized as crucial posttranscriptional regulators of gene expression, and play critical roles as oncogenes or tumor suppressors in various cancers. Here, we show that miR-196b is upregulated in mesenchymal-like-state non-small cell lung cancer (NSCLC) cells and lung cancer tissues. Moreover, miR-196b upregulation stimulates cell invasion and a change in cell morphology to a spindle shape via loss of cell-to-cell contacts. We identified homeobox A9 (HOXA9) as a target gene of miR-196b by using public databases such as TargetScan, miRDB, and microRNA.org. HOXA9 expression is inversely correlated with miR-196b levels in clinical NSCLC samples as compared to that in corresponding control samples, and with the migration and invasion of NSCLC cells. Ectopic expression of HOXA9 resulted in a suppression of miR-196b-induced cell invasion, and HOXA9 reexpression increased E-cadherin expression. Furthermore, HOXA9 potently attenuated the expression of snail family zinc finger 2 (SNAI2/SLUG) and matrix metallopeptidase 9 (MMP9) by controlling the binding of nuclear factor-kappa B to the promoter of SLUG and MMP9 genes, respectively. Therefore, we suggest that HOXA9 plays a central role in controlling the aggressive behavior of lung cancer cells and that miR-196b can serve as a potential target for developing anticancer agents. © 2015 Wiley Periodicals, Inc.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Pulmão/patologia , MicroRNAs/genética , NF-kappa B/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/metabolismo , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Regulação para Cima
7.
BMC Cancer ; 15: 829, 2015 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-26520789

RESUMO

BACKGROUND: Cancer metastasis is a multi-step event including epithelial-to-mesenchymal transition (EMT). Breast cancer metastasis suppressor 1 (BRMS1) is a novel metastasis suppressor protein without anti-proliferating activity. However, a detailed underlying mechanism by which BRMS1 attenuates cancer cell EMT and invasion remained to be answered. In the present study, we report an additional mechanism by which BRMS1 attenuates Transforming growth factor-beta1 (TGF-ß1)-induced breast cancer cell EMT and invasion. METHODS: Experimental analysis involving chromosome immunoprecipitation (ChIP) and luciferase reporter assays were used to validate hypoxia inducible factor-1alpha (HIF-1α) as a transcriptional regulator of TWIST1 and Snail. Quantitative RT-PCR was used to analyze transcript expression. Immunoblotting and immunofluorescence were used to analyze protein expression. Matrigel-coated in vitro invasion insert was used to analyze cancer cell invasion. RESULTS: BRMS1 strongly inhibited TGF-ß1-induced breast cancer cell EMT and invasion. Unexpectedly, we observed that BRMS1 downregulates not only TWIST1 but also Snail expression, thereby inhibiting breast cancer cell invasion. In addition, we provide evidence that HIF-1α is required for Snail and TWIST1 expression. Further, BRMS1 reduced TGF-ß1-induced HIF-1α transcript expression through inactivation of nuclear factor kappaB (NF-κB). CONCLUSION: Collectively, the present study demonstrates a mechanical cascade of BRMS1 suppressing cancer cell invasion through downregulating HIF-1α transcript and consequently reducing Snail and TWIST1 expression.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Repressoras/genética , Fator de Crescimento Transformador beta1/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
9.
Prostate ; 74(5): 528-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24435707

RESUMO

BACKGROUND: Epidermal growth factor (EGF) has been known to induce epithelial-mesenchymal transition (EMT) and prostate cancer cell progression. However, a detailed underlying mechanism by which EGF induces EMT and prostate cancer cell progression remained to be answered. Hypoxia-inducible factor (HIF)-1α and TWIST1 are transcription factors implicated in EMT and cancer metastasis. The purpose of this study is to determine the underlying mechanism of EGF-induced TWIST1 expression and prostate cancer invasion. METHODS: siRNAs were used to silence genes. Immunoblotting, quantitative RT-PCR and immunofluorescence analysis were used to examine protein or mRNA expression. Modified Boyden chamber and invasion assay kit with Matrigel-coated inserts were used to determine prostate cancer cell migration and invasion, respectively. RESULTS: We observed that EGF induced HIF-1α expression and morphological change of prostate cancer epithelial cells to mesenchymal cells. Silencing HIF-1α expression dramatically reduced EGF-induced TWIST1 expression and prostate cancer cell EMT. Conversely, transfection of the cells with HIF-1α siRNA reversed the reduced E-cadherin expression by EGF. Pretreatment of the cells with pharmacological inhibitors of reactive oxygen species [ROS, N-acetylcysteine (NAC)] and STAT3 (WP1066) but not p38 MAPK (SB203580) significantly reduced EGF-induced HIF-1α mRNA and protein expression. Further, pretreatment of the cells with NAC attenuated EGF-induced STAT3 phosphorylation. In addition, we showed that TWIST1 mediated EGF-induced N-cadherin expression, leading to prostate cancer invasion. CONCLUSIONS: We demonstrate a mechanism by which EGF promotes prostate cancer cell progression through a ROS/STAT3/HIF-1α/TWIST1/N-cadherin signaling cascade, providing novel biomarkers and promising therapeutic targets for prostate cancer cell progression.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Invasividade Neoplásica/patologia , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteína 1 Relacionada a Twist/metabolismo , Acetilcisteína/farmacologia , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Proteínas Nucleares/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Neoplasias da Próstata/metabolismo , RNA Interferente Pequeno , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Relacionada a Twist/genética
10.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38131227

RESUMO

Ras­related protein 25 (Rab25) is a member of small GTPase and is implicated in cancer cell progression of various types of cancer. Growing evidence suggests the context­dependent role of Rab25 in cancer invasiveness. Claudin­7 is a tight junction protein and has been known to suppress cancer cell invasion. Although Rab25 was reported to repress cancer aggressiveness through recycling ß1 integrin to the plasma membrane, the detailed underlying mechanism remains to be elucidated. The present study identified the critical role of claudin­7 in Rab25­induced suppression of colon cancer invasion. 3D Matrigel system and modified Boyden chamber analysis showed that enforced expression of Rab25 attenuated colon cancer cell invasion. In addition, Rab25 inactivated epidermal growth factor receptor (EGFR) and increased E­cadherin expression. Unexpectedly, it was observed that Rab25 induces claudin­7 expression through protein stabilization. In addition, ectopic claudin­7 expression reduced EGFR activity and Snail expression as well as colon cancer cell invasion. However, silencing of claudin­7 expression reversed the tumor suppressive role of Rab25, thereby increasing colon cancer cell invasiveness. Collectively, the present data indicated that Rab25 inactivates EGFR and colon cancer cell invasion by upregulating claudin­7 expression.


Assuntos
Neoplasias do Colo , Receptores ErbB , Humanos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias do Colo/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Claudinas/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA