Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36772212

RESUMO

In this paper, a novel method is proposed to effectively reduce the size of a waveguide bandpass filter (BPF). Because the metallic cavities make the conventional waveguide end up with a large geometry, especially for high-order BPFs, very compact waveguide-type resonators having metamaterial zeroth-order resonance (WG ZOR) are designed on the cross section of the waveguide and substituted for the cavities. While the cavities are half-wavelength resonators, the WG ZOR is shorter than one-eighth of a wavelength. A substantial reduction in the size and weight of the waveguide filter is observed as the resonators are cascaded in series through coupling elements in the X-band that is much longer than that in K- or Ka-bands. The proposed metamaterial filter is realized as a 3D-printed structure to be lighter and thus more suitable for low earth orbit (LEO) satellites. An X-band of 7.25-7.75 GHz is chosen to verify the method as the passband with an attenuation of 40 dB at 7.00 GHz and 8.00 GHz as the roll-off in the stopband. The BPF is manufactured in two ways, namely the CNC-milling technique and metal coating-added 3D printing. The design is carried out with a geometrical parameter of not 10-2 mm but rather 10-1 mm, which is good for manufacturers but challenging for component designers. The measurement of the manufactured metal waveguide filters reveals that the passband has about ≤1 dB and ≤-15 dB as the insertion loss and the reflection coefficient, respectively, and the stopband has an attenuation of ≤-40 dB, which are in good agreement with the results of the circuit and the simulation. The proposed filter has a length of 14 cm as the eighth-order BPF, but the conventional waveguide is 20 cm as the seventh-order BPF for the same area of the cross section.

2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293111

RESUMO

Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Camundongos , Animais , NF-kappa B/metabolismo , Cisplatino/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Creatinina , Interleucina-6/metabolismo , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Antineoplásicos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo
3.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281284

RESUMO

Progressive diabetic nephropathy (DN) in diabetes leads to major morbidity and mortality. The major pathological alterations of DN include mesangial expansion, extracellular matrix alterations, tubulointerstitial fibrosis, and glomerular sclerosis. Polygoni avicularis is widely used in traditional oriental medicine and has long been used as a diuretic, astringent, insecticide and antihypertensive. However, to the best of the authors' knowledge, the effects of the ethanolic extract from rhizome of Polygoni avicularis (ER-PA) on DN have not yet been assessed. The present study aimed to identify the effect of ER-PA on renal dysfunction, which has been implicated in DN in human renal mesangial cells and db/db mice and investigate its mechanism of action. The in vivo experiment was performed using Polygoni avicularis-ethanol soluble fraction (ER-PA) and was administrated to db/db mice at 10 and 50 mg/kg dose. For the in vitro experiments, the human renal mesangial cells were induced by high glucose (HG, 25 mM). The ER-PA group showed significant amelioration in oral glucose tolerance, and insulin resistance index. ER-PA significantly improved the albumin excretion and markedly reduced plasma creatinine, kidney injury molecule-1 and C-reactive protein. In addition, ER-PA significantly suppressed inflammatory cytokines. Histopathologically, ER-PA attenuated glomerular expansion and tubular fibrosis in db/db mice. Furthermore, ER-PA suppressed the expression of renal fibrosis biomarkers (TGF and Collagen IV). ER-PA also reduced the NLR family pyrin domain containing 3 inflammatory factor level. These results suggest that ER-PA has a protective effect against renal dysfunction through improved insulin resistance as well as the inhibition of nephritis and fibrosis in DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Fitoterapia , Polygonum/química , Animais , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fibrose , Glucose/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Masculino , Proteínas de Membrana/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rizoma/química
4.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572597

RESUMO

Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Iridoides/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Morte Celular/efeitos dos fármacos , Creatinina/sangue , Citocinas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 18(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335557

RESUMO

Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d-ß-hydroxybutyrate (D-BHB) using SH-SY5Y cells. The cytotoxic mechanism of metformin under glucose deficiency was also examined. Cell viability under 1 mM glucose (glucose deficiency) was significantly decreased which was accompanied by increased production of reactive oxygen species (ROS) and decreased phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase 3 (GSK3ß). ROS inhibitor reversed the glucose deficiency-induced cytotoxicity and restored the reduced phosphorylation of ERK and GSK3ß. While metformin did not alter cell viability in normal glucose media, it further increased cell death and ROS production under glucose deficiency. However, D-BHB reversed cytotoxicity, ROS production, and the decrease in phosphorylation of ERK and GSK3ß induced by the glucose deficiency. ERK inhibitor reversed the D-BHB-induced increase in cell viability under glucose deficiency, whereas GSK3ß inhibitor did not restore glucose deficiency-induced cytotoxicity. Finally, the protective effect of D-BHB against glucose deficiency was confirmed in primary neuronal cells. We demonstrate that glucose deficiency-induced cytotoxicity is mediated by ERK inhibition through ROS production, which is attenuated by D-BHB and intensified by metformin.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/deficiência , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Metformina/toxicidade , Camundongos , Camundongos Endogâmicos ICR , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Korean J Physiol Pharmacol ; 21(5): 519-529, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28883756

RESUMO

Sodium butyrate (SB) has various metabolic actions. However, its effect on dipeptidyl peptidase 4 (DPP-4) needs to be studied further. We aimed to evaluate the metabolic actions of SB, considering its physiologically relevant concentration. We evaluated the effect of SB on regulation of DPP-4 and its other metabolic actions, both in vitro (HepG2 cells and mouse mesangial cells) and in vivo (high fat diet [HFD]-induced obese mice). Ten-week HFD-induced obese C57BL/6J mice were subjected to SB treatment by adding SB to HFD which was maintained for an additional 16 weeks. In HepG2 cells, SB suppressed DPP-4 activity and expression at sub-molar concentrations, whereas it increased DPP-4 activity at a concentration of 1,000 µM. In HFD-induced obese mice, SB decreased blood glucose, serum levels of insulin and IL-1ß, and DPP-4 activity, and suppressed the increase in body weight. On the contrary, various tissues including liver, kidney, and peripheral blood cells showed variable responses of DPP-4 to SB. Especially in the kidney, although DPP-4 activity was decreased by SB in HFD-induced obese mice, it caused an increase in mRNA expression of TNF-α, IL-6, and IL-1ß. The pro-inflammatory actions of SB in the kidney of HFD-induced obese mice were recapitulated by cultured mesangial cell experiments, in which SB stimulated the secretion of several cytokines from cells. Our results showed that SB has differential actions according to its treatment dose and the type of cells and tissues. Thus, further studies are required to evaluate its therapeutic relevance in metabolic diseases including diabetes and obesity.

7.
Environ Sci Technol ; 50(21): 11637-11645, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27701855

RESUMO

Dimethylmonothioarsinic acid (DMMTAV) is a highly toxic, thiolated analogue of dimethylarsinic acid (DMAV). In comparison, a further thiolated analogue, dimethyldithioarsinic acid (DMDTAV), and DMAV both exhibit lower toxicity. To understand the environmental conditions responsible for forming DMMTAV, the kinetics of DMAV thiolation are examined. The thiolation of DMAV is pH-dependent and consists of two consecutive first-order reactions under excess sulfide conditions. The first thiolation of DMAV to form DMMTAV is faster than the second one to DMDTAV. DMMTAV is therefore an intermediate. The first reaction is first-order in H2S at pH 6.0 and 20 °C; therefore, the overall reaction is second-order and the rate coefficient in this condition is 0.0780 M-1 s-1. The rate coefficient significantly decreases at pH 8.0, indicating that H2S(aq) triggers the thiolation of DMAV. The second reaction rate is significantly decreased at pH 2.5; therefore, reaction under strongly acidic conditions leads to accumulation of highly toxic DMMTAV in the early stages of thiolation. The transformation of DMDTAV to DMMTAV is catalyzed in the presence of ferric iron. Formation of DMMTAV should be considered when assessing risk posed by arsenic under sulfidic or sulfate reducing conditions.


Assuntos
Arsênio , Ácido Cacodílico/análogos & derivados , Arsenicais , Meio Ambiente , Cinética
8.
Chemosphere ; 359: 142365, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763402

RESUMO

Although a series of past studies proved the potential usage of Fe-based metal-organic frameworks (MOFs) as photocatalysts, there remains a knowledge gap of the photocatalytic mechanism stemming from the challenge to separate the simultaneous sorption and photocatalytic degradation. Thus, this article aimed to suggest a novel approach by desorbing target molecules during photocatalysis to excavate the underlying mechanisms of sorption and photocatalytic degradation. In this study, two Fe-based MOFs, MIL-101(Fe) and MIL-101(Fe)-NH2, were selected to remove clofibric acid under visible light irradiation. Prior to photocatalysis, sorption mechanism was uncovered based on the sorption kinetic, isotherm, thermodynamic interpretation, and of its dependence on solution pH. The results inferred that the primary sorption mechanism was through the π-π interaction between the benzene ring of clofibric acid and the organic ligand of Fe-based MOFs. Based on these results, photocatalytic mechanism could be independently or jointly assessed during the photocatalytic degradation of clofibric acid. Subsequently, the application of the Tauc method and XPS spectra revealed that the bandgap structure of Fe-based MOFs had the potential to oxidize clofibric acid by producing ROS through the electron excitation upon visible-light illumination. On top of that, the amine functionalization of Fe-based MOF altered the structural moiety that led to an additional strong acid-base interaction with clofibric acid but a decrease in the bandgap limiting the ROS production during photocatalytic activity.


Assuntos
Ácido Clofíbrico , Ferro , Luz , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Ácido Clofíbrico/química , Catálise , Ferro/química , Cinética , Fotólise , Adsorção , Poluentes Químicos da Água/química
9.
Integr Med Res ; 13(2): 101041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948488

RESUMO

Background: Investigating the effects of electroacupuncture (EA) treatment on cardiovascular function and aortic lipid profiles in spontaneously hypertensive rats (SHR) constitutes the foundational focus of this study. The overarching goal is to comprehensively elucidate the alterations brought about by EA treatment and to assess its potential as an alternative therapy for hypertension. Methods: Consecutive EA treatments were administered to SHR, and the effects on systolic blood pressure, cardiac function, and hypertension-related neuronal signals were assessed. Aortic lipid profiles in vehicle-treated SHR and EA-treated SHR groups were analyzed using mass spectrometry-based lipid profiling. Additionally, the expression of Cers2 and GNPAT, enzymes involved in the synthesis of specific aortic lipids, was examined. Results: The study demonstrated that consecutive EA treatments restored systolic blood pressure, improved cardiovascular function, and normalized hypertension-related neuronal signals in SHR. Analysis of the aortic lipid profiles revealed distinct differences between the vehicle-treated SHR group and the EA-treated SHR group. Specifically, EA treatment significantly altered the levels of aortic sphingomyelin and phospholipids, including very long-chain fatty acyl-ceramides and ether phosphatidylcholines. These changes in aortic lipid profiles correlated significantly with systolic blood pressure and cardiac function indicators. Furthermore, EA treatment significantly altered the expression of Cers2 and GNPAT. Conclusions: The findings suggest that EA may influence cardiovascular functions and aortic lipid profiles in SHR.

10.
Dig Dis Sci ; 58(10): 2908-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918150

RESUMO

BACKGROUND/AIM: We have previously reported that bee venom (BV) has a protective role against acute pancreatitis (AP). However, the effects of apamin, the major compound of BV, on AP have not been determined. The aim of this study was to evaluate the effects of apamin on cerulein-induced AP. METHODS: AP was induced via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 µg/kg) every hour for 6 times. In the apamin treatment group, apamin was administered subcutaneously (10, 50, or 100 µg/kg) at both 18 and 1 h before the first cerulein injection. The mice were sacrificed at 6 h after the final cerulein injection. Blood samples were obtained to determine serum amylase and lipase levels, as well as cytokine production. The pancreas and lung were rapidly removed for morphologic and histological examination, myeloperoxidase (MPO) assay, and real-time reverse transcription-polymerase chain reaction. Furthermore, we isolated the pancreatic acinar cells to specify the role of apamin in AP. RESULTS: Pre-treatment with apamin inhibited histological damage, pancreatic weight/body weight ratio, serum level of amylase and lipase, MPO activity, and cytokine production. In addition, apamin treatment significantly inhibited cerulein-induced pancreatic acinar cell death. Furthermore, apamin treatment inhibited the cerulein-induced activation of c-Jun NH2-terminal kinases (JNK). CONCLUSIONS: These results could suggest that apamin could protect against AP by inhibition of JNK activation.


Assuntos
Apamina/farmacologia , Apamina/uso terapêutico , Ceruletídeo/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pancreatite/induzido quimicamente , Pancreatite/prevenção & controle , Doença Aguda , Animais , Apamina/administração & dosagem , Ceruletídeo/administração & dosagem , Colecistocinina/análogos & derivados , Citocinas/metabolismo , Modelos Animais de Doenças , Injeções Intraperitoneais , Injeções Subcutâneas , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia
11.
J Hazard Mater ; 447: 130826, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36682247

RESUMO

The nonstationary nature of water and oxygen content in the vadose zone determines various biogeochemical reactions regarding arsenic (As) therein, which affects the groundwater vulnerability to As contamination at a site. In the present study, we evaluated the effect of soil organic matter (OM) on the behavior of As using specifically designed soil columns that simulated the vadose zone. Three wet-dry cycles were applied to each of the four columns with different OM contents and bulk densities. OM was found to exhibit variable effects, either inhibiting or accelerating the mobilization of As, depending on bulk density. At a moderate bulk density (< 1.27 g/cm3), OM slightly lowered the pH of pore water, which enhanced the sorption of As onto the iron (Fe) oxides, promoting the retention of As in soil. In the soil column with a relatively higher bulk density (1.36 g/cm3), however, the dissimilatory reduction of iron oxides was triggered by rich OM under oxygen-limited conditions. X-ray absorption spectroscopy analysis revealed that alternate wetting and drying transformed the Fe oxides in the soil by reductive dissolution and subsequent re-precipitation. Consequently, As was not stably retained in the soil, and its mobilization downwards was further accelerated.

12.
Life (Basel) ; 13(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137908

RESUMO

Cardiac hypertrophy is developed by various diseases such as myocardial infarction, valve diseases, hypertension, and aortic stenosis. Sibjotang (, Shizaotang, SJT), a classic formula in Korean traditional medicine, has been shown to modulate the equilibrium of body fluids and blood pressure. This research study sought to explore the impact and underlying process of Sibjotang on cardiotoxicity induced by DOX in H9c2 cells. In vitro, H9c2 cells were induced by DOX (1 µM) in the presence or absence of SJT (1-5 µg/mL) and incubated for 24 h. In vivo, SJT was administrated to isoproterenol (ISO)-induced cardiac hypertrophy mice (n = 8) at 100 mg/kg/day concentrations. Immunofluorescence staining revealed that SJT mitigated the enlargement of H9c2 cells caused by DOX in a dose-dependent way. Using SJT as a pretreatment notably suppressed the rise in cardiac hypertrophic marker levels induced by DOX. SJT inhibited the DOX-induced ERK1/2 and p38 MAPK signaling pathways. In addition, SJT significantly decreased the expression of the hypertrophy-associated transcription factor GATA binding factor 4 (GATA 4) induced by DOX. SJT also decreased hypertrophy-associated calcineurin and NFAT protein levels. Pretreatment with SJT significantly attenuated DOX-induced apoptosis-associated proteins such as Bax, caspase-3, and caspase-9 without affecting cell viability. In addition, the results of the in vivo study indicated that SJT significantly reduced the left ventricle/body weight ratio level. Administration of SJT reduced the expression of hypertrophy markers, such as ANP and BNP. These results suggest that SJT attenuates cardiac hypertrophy and heart failure induced by DOX or ISO through the inhibition of the calcineurin/NFAT/GATA4 pathway. Therefore, SJT may be a potential treatment for the prevention and treatment of cardiac hypertrophy that leads to heart failure.

13.
Stroke ; 42(5): 1282-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21474802

RESUMO

BACKGROUND AND PURPOSE: Stroke is one of the leading causes of adult disability and death in developing countries. However, early diagnosis is difficult and no reliable biomarker is currently available. Thus, we applied a 1H-NMR metabolomics approach to investigate the altered metabolic pattern in plasma and urine from patients with cerebral infarctions and sought to identify metabolic biomarkers associated with stroke. METHODS: Metabolic profiles of plasma and urine from patients with cerebral infarctions, especially small vessel occlusion, were investigated using 1H-NMR spectroscopy coupled with multivariate statistical analysis, such as principal components analysis and orthogonal partial least-squares discriminant analysis. RESULTS: Multivariate statistical analysis showed a significant separation between patients and healthy individuals. The plasma of stroke patients was characterized by the increased excretion of lactate, pyruvate, glycolate, and formate, and by the decreased excretion of glutamine and methanol; the urine of stroke patients was characterized by decreased levels of citrate, hippurate, and glycine. These metabolites detected from plasma and urine of patients with cerebral infarctions were associated with anaerobic glycolysis, folic acid deficiency, and hyperhomocysteinemia. Furthermore, the presence of cerebral infarction in the external validation model was predicted with high accuracy. CONCLUSIONS: These data demonstrate that a metabolomics approach may be useful for the effective diagnosis of cerebral infarction and for the further understanding of stroke pathogenesis.


Assuntos
Infarto Cerebral/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Infarto Cerebral/diagnóstico , Infarto Cerebral/etiologia , Feminino , Deficiência de Ácido Fólico/metabolismo , Glicólise/fisiologia , Humanos , Hiper-Homocisteinemia/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Multivariada
14.
Biol Pharm Bull ; 34(1): 97-102, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21212525

RESUMO

Butein (3,4,2',4'-tetrahydroxychalcone), a plant polyphenol, is a major component in isolate of Rhus verniciflua STOKES (Anacardiaceae). It is shown to exert various potent effects such as antioxidant, antiinflammatory induction of apoptosis among many properties. In this study, we investigated the effect of butein on cytokine-induced ß-cell damage. Pre-treatment with butein is shown to increase the viability of cytokine-treated INS-1 cells at concentrations of 15-30 µM. Butein prevented cytokine-mediated cell death, as well as nitric oxide (NO) production, and these effects correlated well with reduced levels of protein expression of the inducible nitric oxide synthase (iNOS). Furthermore, the molecular mechanisms by which butein inhibits iNOS gene expression appeared to be through the inhibition of nuclear factor-κB (NF-κB) translocation. In a second set of experiments, rat islets were used to demonstrate the protective effects of butein and the results were essentially the same as those observed in Beutin pretreated INS-1 cells. Butein prevented cytokine-induced NO production, iNOS expression, and NF-κB translocation and inhibition of glucose-stimulated insulin secretion (GSIS). In conclusion, these results suggest that butein can be used for the prevention of functional ß-cell damage and preventing the progression of Type 1 diabetes mellitus (T1DM).


Assuntos
Chalconas/farmacologia , Citocinas/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Óxido Nítrico/metabolismo , Rhus/química , Animais , Linhagem Celular , Chalconas/química , Regulação Enzimológica da Expressão Gênica , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Biol Pharm Bull ; 34(10): 1566-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21963496

RESUMO

Sauchinone, a biologically active lignan isolated from the roots of Saururus chinensis (LOUR.) BAILL. (Saururaceae), is reported to exert a variety of biological activities, such as hepatoprotective, anti-inflammatory actions and inhibitory effects on bone resorption. In this study, we investigated the effect of sauchinone in suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, leading to a reduction in COX-2-derived prostaglandin E(2) (PGE(2)) and iNOS-derived nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated RAW264.7 macrophages. Present study also demonstrates the effects of sauchinone in inducing heme oxygenase-1 (HO-1) expression and an increase in heme oxygenase (HO) activity in RAW264.7 macrophages. The effects of sauchinone on LPS-induced PGE(2), NO, tumor necrosis factor-α (TNF-α) and interlukine-1ß (IL-1ß) production were partially reversed by the HO-1 inhibitor Tin protoporphyrin was also seen in this study. In addition, we found that treatment with extracellular signal-regulated kinase (ERK) inhibitor (PD98059) reduced sauchinone-induced HO-1 expression. Sauchinone also increased ERK phosphorylation. These results suggest that sauchinone inhibits pro-inflammatory mediators through expression of anti-inflammatory HO-1 via ERK pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Benzopiranos/farmacologia , Dioxóis/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/tratamento farmacológico , Preparações de Plantas/farmacologia , Saururaceae , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/metabolismo , Benzopiranos/química , Benzopiranos/imunologia , Benzopiranos/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Dioxóis/química , Dioxóis/imunologia , Dioxóis/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Heme Oxigenase-1/imunologia , Heme Oxigenase-1/metabolismo , Inflamação/fisiopatologia , Mediadores da Inflamação/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Metaloporfirinas , Camundongos , Terapia de Alvo Molecular , Óxido Nítrico/biossíntese , Óxido Nítrico/imunologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fitoterapia , Preparações de Plantas/química , Preparações de Plantas/isolamento & purificação , Raízes de Plantas , Protoporfirinas , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
16.
Nutrients ; 13(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684415

RESUMO

YG-1 extract used in this study is a mixture of Lonicera japonica, Arctic Fructus, and Scutellariae Radix. The present study was designed to investigate the effect of YG-1 extract on bronchodilatation (ex vivo) and acute bronchial and pulmonary inflammation relief (in vivo). Ex vivo: The bronchodilation reaction was confirmed by treatment with YG-1 concentration-accumulation (0.01, 0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring pre-contracted by acetylcholine (10 µM). As a result, YG-1 extract is considered to affect bronchodilation by increased cyclic adenosine monophosphate, cAMP) levels through the ß2-adrenergic receptor. In vivo: experiments were performed in C57BL/6 mice were divided into the following groups: control group; PM2.5 (fine particulate matter)-exposed group (PM2.5, 200 µg/kg/mL saline); and PM2.5-exposed + YG-1 extract (200 mg/kg/day) group. The PM2.5 (200 µg/kg/mL saline) was exposed for 1 h for 5 days using an ultrasonic nebulizer aerosol chamber to instill fine dust in the bronchi and lungs, thereby inducing acute lung and bronchial inflammation. From two days before PM2.5 exposure, YG-1 extract (200 mg/kg/day) was administered orally for 7 days. The PM2.5 exposure was involved in airway remodeling and inflammation, suggesting that YG-1 treatment improves acute bronchial and pulmonary inflammation by inhibiting the inflammatory cytokines (NLRP3/caspase-1 pathway). The application of YG-1 extract with broncho-dilating effect to acute bronchial and pulmonary inflammation animal models has great significance in developing therapeutic agents for respiratory diseases. Therefore, these results can provide essential data for the development of novel respiratory symptom relievers. Our study provides strong evidence that YG-1 extracts reduce the prevalence of respiratory symptoms and the incidence of non-specific lung diseases and improve bronchial and lung function.


Assuntos
Broncodilatadores/farmacologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Extratos Vegetais/farmacologia , Pneumonia/metabolismo , Pneumonia/patologia , Animais , Biomarcadores , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Cromatografia Líquida de Alta Pressão , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Estrutura Molecular , Material Particulado/efeitos adversos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Pneumonia/tratamento farmacológico , Pneumonia/etiologia , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Nutrients ; 13(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34836432

RESUMO

Diabetic cardiovascular dysfunction is a representative complication of diabetes. Inflammation associated with the onset and exacerbation of type 2 diabetes mellitus (T2DM) is an essential factor in the pathogenesis of diabetic cardiovascular complications. Diabetes-induced myocardial dysfunction is characterized by myocardial fibrosis, which includes structural heart changes, myocardial cell death, and extracellular matrix protein accumulation. The mice groups in this study were divided as follows: Cont, control (db/m mice); T2DM, type 2 diabetes mellitus mice (db/db mice); Vil.G, db/db + vildagliptin 50 mg/kg/day, positive control, dipeptidyl peptidase-4 (DPP-4) inhibitor; Bla.C, db/db + blackcurrant 200 mg/kg/day. In this study, Bla.C treatment significantly improved the homeostatic model evaluation of glucose, insulin, and insulin resistance (HOMA-IR) indices and diabetic blood markers such as HbA1c in T2DM mice. In addition, Bla.C improved cardiac function markers and cardiac thickening through echocardiography. Bla.C reduced the expression of fibrosis biomarkers, elastin and type IV collagen, in the left ventricle of a diabetic cardiopathy model. Bla.C also inhibited TD2M-induced elevated levels of inflammatory cytokines in cardiac tissue (IL-6, IL-1ß, TNF-α, and TGF-ß). Thus, Bla.C significantly improved cardiac inflammation and cardiovascular fibrosis and dysfunction by blocking inflammatory cytokine activation signals. This showed that Bla.C treatment could ameliorate diabetes-induced cardiovascular complications in T2DM mice. These results provide evidence that Bla.C extract has a significant effect on the prevention of cardiovascular fibrosis, inflammation, and consequent diabetes-induced cardiovascular complications, directly or indirectly, by improving blood glucose profile.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Hipoglicemiantes/farmacologia , Miocárdio/patologia , Extratos Vegetais/farmacologia , Ribes , Animais , Glicemia/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/etiologia , Fibrose , Coração/efeitos dos fármacos , Camundongos
18.
Nutrients ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34684485

RESUMO

Cardiac hypertrophy can lead to congestive heart failure and is a leading cause of morbidity and mortality worldwide. In recent years, it has been essential to find the treatment and prevention of cardiac hypertrophy. Betulinic acid (BA), the main active ingredient in many natural products, is known to have various physiological effects. However, as the potential effect of BA on cardiac hypertrophy and consequent renal dysfunction is unknown, we investigated the effect of BA on isoprenaline (ISO)-induced cardiac hypertrophy and related signaling. ISO was known to induce left ventricular hypertrophy by stimulating the ß2-adrenergic receptor (ß2AR). ISO was injected into Sprague Dawley rats (SD rats) by intraperitoneal injection once a day for 28 days to induce cardiac hypertrophy. From the 14th day onwards, the BA (10 or 30 mg/kg/day) and propranolol (10 mg/kg/day) were administered orally. The study was conducted in a total of 5 groups, as follows: C, control; Is, ISO (10 mg/kg/day); Pr, positive-control, ISO + propranolol (10 mg/kg/day); Bl, ISO + BA (10 mg/kg/day); Bh, ISO + BA (30 mg/kg/day). As a result, the total cardiac tissue and left ventricular tissue weights of the ISO group increased compared to the control group and were significantly reduced by BA treatment. In addition, as a result of echocardiography, the effect of BA on improving cardiac function, deteriorated by ISO, was confirmed. Cardiac hypertrophy biomarkers such as ß-MHC, ANP, BNP, LDH, and CK-MB, which were increased by ISO, were significantly decreased by BA treatment. Also, the cardiac function improvement effect of BA was confirmed to improve cardiac function by inhibiting calcineurin/NFATc3 signaling. Renal dysfunction is a typical complication caused by cardiac hypertrophy. Therefore, the study of renal function indicators, creatinine clearance (Ccr) and osmolality (BUN) was aggravated by ISO treatment but was significantly restored by BA treatment. Therefore, it is thought that BA in cardiac hypertrophy can be used as valuable data to develop as a functional material effective in improving cardiac-renal dysfunction.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Coração/fisiopatologia , Rim/fisiopatologia , Fatores de Transcrição NFATC/metabolismo , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais , Animais , Biomarcadores/sangue , Cardiomegalia/sangue , Cardiomegalia/patologia , Fibrose , Coração/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Isoproterenol , Rim/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ácido Betulínico
19.
Biochem Biophys Res Commun ; 403(3-4): 428-34, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21094140

RESUMO

AHNAK is a giant protein of approximately 700 kDa identified in human neuroblastomas and skin epithelial cells. Recently, we found that AHNAK knock-out (AHNAK(-/-)) mice have a strong resistance to high-fat diet-induced obesity. In this study, we applied (1)H NMR-based metabolomics with multivariate statistical analysis to compare the altered metabolic patterns detected in urine from high-fat diet (HFD) fed wild-type and AHNAK(-/-) mice and investigate the mechanisms underlying the resistance to high-fat diet-induced obesity in AHNAK(-/-) mice. In global profiling, principal components analysis showed a clear separation between the chow diet and HFD groups; wild-type and AHNAK(-/-) mice were more distinctly separated in the HFD group compared to the chow diet group. Based on target profiling, the urinary metabolites of HFD-fed AHNAK(-/-) mice gave higher levels of methionine, putrescine, tartrate, urocanate, sucrose, glucose, threonine, and 3-hydroxyisovalerate. Furthermore, two-way ANOVAs indicated that diet type, genetic type, and their interaction (gene × diet) affect the metabolite changes differently. Most metabolites were affected by diet type, and putrescine, threonine, urocanate, and tartrate were also affected by genetic type. In addition, cis-aconitate, succinate, glycine, histidine, methylamine (MA), phenylacetylglycine (PAG), methionine, putrescine, uroconate, and tartrate showed interaction effects. Through the pattern changes in urinary metabolites of HFD-fed AHNAK(-/-) mice, our data suggest that the strong resistance to HFD-induced obesity in AHNAK(-/-) mice comes from perturbations of amino acids, such as methionine, putrescine, threonine, and histidine, which are related to fat metabolism. The changes in metabolites affected by microflora such as PAG and MA were also observed. In addition, resistance to obesity in HFD-fed AHNAK(-/-) mice was not related to an activated tricarboxylic acid cycle. These findings demonstrate that (1)H NMR-based metabolic profiling of urine is suitable for elucidating possible biological pathways perturbed by functional loss of AHNAK on HFD feeding and could elucidate the mechanism underlying the resistance to high-fat diet-induced obesity in AHNAK(-/-) mice.


Assuntos
Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Gorduras na Dieta/administração & dosagem , Espectroscopia de Ressonância Magnética , Metabolômica , Camundongos , Camundongos Knockout , Obesidade/genética
20.
Appl Opt ; 49(3): 484-91, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20090815

RESUMO

We have investigated surface-enhanced plasmon resonance detection of DNA hybridization. Surface enhancement was based on the excitation of localized surface plasmon using subwavelength nanogratings, at a 300 nm period, coated with 24-mer ssDNA oligonucleotide, while optical signatures of DNA were amplified at the same time by gold nanoparticles conjugated with complementary ssDNA strands. When using nanoparticles of different sizes, maximum sensitivity enhancement, of more than 18 times, was obtained with nanoparticles of 20 nm diameter. This enhancement is mainly due to nanoparticle-associated signal amplification. Additional surface enhancement boosted the detection sensitivity by 57%. We have also confirmed the sensitivity enhancement to be linearly related to nanoparticle volume.


Assuntos
DNA/análise , Ressonância de Plasmônio de Superfície/métodos , Sequência de Bases , DNA/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Nanofios/ultraestrutura , Hibridização de Ácido Nucleico , Fenômenos Ópticos , Ressonância de Plasmônio de Superfície/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA