Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Front Pharmacol ; 15: 1428242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119601

RESUMO

The various roles of the mitochondria and the microbiome in health and disease have been thoroughly investigated, though they are often examined independently and in the context of chronic disease. However, the mitochondria and microbiome are closely connected, namely, through their evolution, maternal inheritance patterns, overlapping role in many diseases and their importance in the maintenance of human health. The concept known as the "mitochondria-microbiome crosstalk" is the ongoing bidirectional crosstalk between these two entities and warrants further exploration and consideration, especially in the context of primary mitochondrial disease, where mitochondrial dysfunction can be detrimental for clinical manifestation of disease, and the role and composition of the microbiome is rarely investigated. A potential mechanism underlying this crosstalk is the role of metabolites from both the mitochondria and the microbiome. During digestion, gut microbes modulate compounds found in food, which can produce metabolites with various bioactive effects. Similarly, mitochondrial metabolites are produced from substrates that undergo biochemical processes during cellular respiration. This review aims to provide an overview of current literature examining the mitochondria-microbiome crosstalk, the role of commonly studied metabolites serve in signaling and mediating these biochemical pathways, and the impact diet has on both the mitochondria and the microbiome. As a final point, this review highlights the up-to-date implications of the mitochondria-microbiome crosstalk in mitochondrial disease and its potential as a therapeutic tool or target.

3.
Clin Genitourin Cancer ; 22(3): 102080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653037

RESUMO

BACKGROUND: There is currently limited literature assessing the real-world treatment patterns and clinical outcomes of patients with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) mutations. METHODS: Medical charts were abstracted for mCRPC patients with ≥ 1 of 12 HRR somatic gene alterations treated at US oncology centers participating in the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange. Treatment patterns and clinical outcomes were assessed from the initiation of first-line or later (1L+) mCRPC therapy received on or after July 1, 2014. RESULTS: Among 138 patients included in the study, the most common somatic HRR mutations were CDK12 (47.8%), BRCA2 (22.5%), and ATM (21.0%). Novel hormonal therapy and taxane chemotherapy were most commonly used in 1L; taxane use increased in later lines. Median overall survival (95% confidence interval [CI]) was 36.3 (30.7-47.8) months from initiation of 1L therapy and decreased for subsequent lines. Similarly, there was a trend of decreasing progression-free survival and prostate-specific antigen response from 1L to 4L+ therapy. CONCLUSIONS: Treatment patterns identified in this study were similar to those among patients with mCRPC regardless of tumor HRR mutation status in the literature.


Assuntos
Proteína BRCA2 , Mutação , Neoplasias de Próstata Resistentes à Castração , Reparo de DNA por Recombinação , Humanos , Masculino , Idoso , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Proteína BRCA2/genética , Pessoa de Meia-Idade , Proteínas Mutadas de Ataxia Telangiectasia/genética , Taxoides/uso terapêutico , Taxoides/administração & dosagem , Quinases Ciclina-Dependentes/genética , Resultado do Tratamento , Idoso de 80 Anos ou mais , Antígeno Prostático Específico/sangue , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Retrospectivos , Metástase Neoplásica
4.
Elife ; 122023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109272

RESUMO

In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins (INPs) of common environmental bacteria like Pseudomonas syringae and Pseudomonas borealis. However, individually, these 100 kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an INP gene into Escherichia coli led to efficient ice nucleation. Here, we demonstrate that a positively charged subdomain at the C-terminal end of the central ß-solenoid of the INP is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the INP multimers form fibres that are ~5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.


Assuntos
Escherichia coli , Gelo , Congelamento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA