Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CRISPR J ; 5(1): 66-79, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882002

RESUMO

Metachromatic leukodystrophy (MLD) is a rare genetic disorder caused by mutations in the Arylsulfatase-A (ARSA) gene. The enzyme plays a key role in sulfatide metabolism in brain cells, and its deficiency leads to neurodegeneration. The clinical manifestations of MLD include stagnation and decline of motor and cognitive function, leading to premature death with limited standard treatment options. Here, we describe a mutation-agnostic hematopoietic stem and progenitor cell (HSPC) gene therapy using CRISPR-Cas9 and AAV6 repair template as a prospective treatment option for MLD. Our strategy achieved efficient insertions and deletions (>87%) and a high level of gene integration (>47%) at the ARSA locus in human bone marrow-derived HSPCs, with no detectable off-target editing. As a proof of concept, we tested our mutation-agnostic therapy in HSPCs derived from two MLD patients with distinct mutations and demonstrated restoration of ARSA enzyme activity (>30-fold improvement) equivalent to healthy adults. In summary, our investigation enabled a mutation-agnostic therapy for MLD patients with proven efficacy and strong potential for clinical translation.


Assuntos
Leucodistrofia Metacromática , Sistemas CRISPR-Cas/genética , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Mutação , Estudos Prospectivos
2.
Nat Commun ; 11(1): 3939, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770105

RESUMO

The recently discovered DPANN archaea are a potentially deep-branching, monophyletic radiation of organisms with small cells and genomes. However, the monophyly and early emergence of the various DPANN clades and their role in life's evolution are debated. Here, we reconstructed and analysed genomes of an uncharacterized archaeal phylum (Candidatus Undinarchaeota), revealing that its members have small genomes and, while potentially being able to conserve energy through fermentation, likely depend on partner organisms for the acquisition of certain metabolites. Our phylogenomic analyses robustly place Undinarchaeota as an independent lineage between two highly supported 'DPANN' clans. Further, our analyses suggest that DPANN have exchanged core genes with their hosts, adding to the difficulty of placing DPANN in the tree of life. This pattern can be sufficiently dominant to allow identifying known symbiont-host clades based on routes of gene transfer. Together, our work provides insights into the origins and evolution of DPANN and their hosts.


Assuntos
Archaea/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma Arqueal , Simbiose/genética , Filogenia
3.
FEMS Microbiol Lett ; 366(2)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629179

RESUMO

Archaea-a primary domain of life besides Bacteria-have for a long time been regarded as peculiar organisms that play marginal roles in biogeochemical cycles. However, this picture changed with the discovery of a large diversity of archaea in non-extreme environments enabled by the use of cultivation-independent methods. These approaches have allowed the reconstruction of genomes of uncultivated microorganisms and revealed that archaea are diverse and broadly distributed in the biosphere and seemingly include a large diversity of putative symbiotic organisms, most of which belong to the tentative archaeal superphylum referred to as DPANN. This archaeal group encompasses at least 10 different lineages and includes organisms with extremely small cell and genome sizes and limited metabolic capabilities. Therefore, many members of DPANN may be obligately dependent on symbiotic interactions with other organisms and may even include novel parasites. In this contribution, we review the current knowledge of the gene repertoires and lifestyles of members of this group and discuss their placement in the tree of life, which is the basis for our understanding of the deep microbial roots and the role of symbiosis in the evolution of life on Earth.


Assuntos
Archaea/genética , Evolução Molecular , Variação Genética , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Genoma Arqueal , Filogenia
4.
Sci Adv ; 4(9): eaat9660, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30263960

RESUMO

Detecting associations between genomic changes and phenotypic differences is fundamental to understanding how phenotypes evolved. By systematically screening for parallel amino acid substitutions, we detected known as well as novel cases (Strc, Tecta, and Cabp2) of parallelism between echolocating bats and toothed whales in proteins that could contribute to high-frequency hearing adaptations. Our screen also showed that echolocating mammals exhibit an unusually high number of parallel substitutions in fast-twitch muscle fiber proteins. Both echolocating bats and toothed whales produce an extremely rapid call rate when homing in on their prey, which was shown in bats to be powered by specialized superfast muscles. We show that these genes with parallel substitutions (Casq1, Atp2a1, Myh2, and Myl1) are expressed in the superfast sound-producing muscle of bats. Furthermore, we found that the calcium storage protein calsequestrin 1 of the little brown bat and the bottlenose dolphin functionally converged in its ability to form calcium-sequestering polymers at lower calcium concentrations, which may contribute to rapid calcium transients required for superfast muscle physiology. The proteins that our genomic screen detected could be involved in the convergent evolution of vocalization in echolocating mammals by potentially contributing to both rapid Ca2+ transients and increased shortening velocities in superfast muscles.


Assuntos
Adaptação Fisiológica , Ecolocação/fisiologia , Evolução Molecular , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Musculares/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Quirópteros , Feminino , Regulação da Expressão Gênica , Camundongos , Homologia de Sequência , Baleias
5.
PLoS One ; 9(7): e103729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078784

RESUMO

Ferritin is a highly-conserved iron-storage protein that has also been identified as an acute phase protein within the innate immune system. The iron-storage function is mediated through complementary roles played by heavy (H)-chain subunit as well as the light (L) in mammals or middle (M)-chain in teleosts, respectively. In this study, we report the identification of five ferritin subunits (H1, H2, M1, M2, M3) in the Atlantic salmon that were supported by the presence of iron-regulatory regions, gene structure, conserved domains and phylogenetic analysis. Tissue distribution analysis across eight different tissues showed that each of these isoforms is differentially expressed. We also examined the expression of the ferritin isoforms in the liver and kidney of juvenile Atlantic salmon that was challenged with Aeromonas salmonicida as well as in muscle cell culture stimulated with interleukin-1ß. We found that each isoform displayed unique expression profiles, and in certain conditions the expressions between the isoforms were completely diametrical to each other. Our study is the first report of multiple ferritin isoforms from both the H- and M-chains in a vertebrate species, as well as ferritin isoforms that showed decreased expression in response to infection. Taken together, the results of our study suggest the possibility of functional differences between the H- and M-chain isoforms in terms of tissue localisation, transcriptional response to bacterial exposure and stimulation by specific immune factors.


Assuntos
Ferritinas/genética , Proteínas de Peixes/genética , Salmo salar/genética , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Feminino , Ferritinas/metabolismo , Proteínas de Peixes/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Salmo salar/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA