RESUMO
Cell-adhesive factors mediate adhesion of cells to substrates via peptide motifs such as the Arg-Gly-Asp (RGD) sequence. With the onset of sustainability issues, there is a pressing need to find alternatives to animal-derived cell-adhesive factors, especially for cell-cultivated food applications. In this paper, we show how data mining can be a powerful approach toward identifying fungal-derived cell-adhesive proteins and present a method to isolate and utilize these proteins as extracellular matrices (ECM) to support cell adhesion and culture in 3D. Screening of a protein database for fungal and plant proteins uncovered that ~5.5% of the unique reported proteins contain RGD sequences. A plot of fungi species vs RGD percentage revealed that 98% of the species exhibited an RGD percentage > = 1%. We observed the formation of protein particles in crude extracts isolated from basidiomycete fungi, which could be correlated to their stability towards particle aggregation at different temperatures. These protein particles were incorporated in 3D fiber matrices encapsulating mouse myoblast cells, showing a positive effect on cell alignment. We demonstrated a cell traction stress on the protein particles (from Flammulina velutipes) that was comparable to cells on fibronectin. A snapshot of the RGD-containing proteins in the fungal extracts was obtained by combining SDS-PAGE and mass spectrometry of the peptide fragments obtained by enzymatic cleavage. Therefore, a sustainable source of cell-adhesive proteins is widely available in the fungi kingdom. A method has been developed to identify candidate species and produce cell-adhesive matrices, applicable to the cell-cultivated food and healthcare industries.
RESUMO
In light of pressing issues, such as sustainability and climate change, future protein sources will increasingly turn from livestock to cell-based production and manufacturing activities. In the case of cell-based or cultured meat a relevant aspect would be the differentiation of muscle cells into mature muscle tissue, as well as how the microsystems that have been developed to date can be developed for larger-scale cultures. To delve into this aspect we review previous research that has been carried out on skeletal muscle tissue engineering and how various biological and physicochemical factors, mechanical and electrical stimuli, affect muscle cell differentiation on an experimental scale. Material aspects such as the different biomaterials used and 3D vs. 2D configurations in the context of muscle cell differentiation will also be discussed. Finally, the ability to translate these systems to more scalable bioreactor configurations and eventually bring them to a commercial scale will be touched upon.