RESUMO
The electrochemical reduction of carbon dioxide (CO2 ) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.
RESUMO
A highly efficient CO2 electrolysis system could be created by introducing biomass oxidation as an alternative anodic reaction to the sluggish oxygen evolution reaction in a CO2-saturated and near-neutral electrolyte. Here, we successfully demonstrate anodic biomass oxidation by synthesizing 5 nm nickel oxide nanoparticles (NiO NPs). NiO NPs show a unique electrocatalytic activity for 5-hydroxymethylfurfural (HMF) oxidation under near-neutral conditions, exhibiting an anodic current onset (1 mA cm-2) at 1.524 V versus the reversible hydrogen electrode and a total Faradaic efficiency of ≤70%. Electrokinetic and in situ ultraviolet-visible spectroscopic analyses suggest that a redox active nickel hydroxide species is formed on the surface of NiO electrocatalysts during HMF oxidation, and this oxidation of Ni(II) hydroxide to Ni(III) oxyhydroxide could be the rate-determining step. This mechanistic study of biomass oxidation in a CO2-saturated electrolyte provides insight into constructing a highly efficient system for the paired electrolysis of CO2 reduction and biomass oxidation.
Assuntos
Biomassa , Dióxido de Carbono/química , Eletrólise/métodos , Eletrólitos/química , Nanopartículas Metálicas/química , Níquel/química , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas/métodos , Eletrólitos/metabolismo , Níquel/metabolismo , OxirreduçãoRESUMO
The reaction mechanism of electrochemical chloride oxidation at neutral pH is different from that at acidic pH, in which a commercial chlor-alkali process has been developed. Different proton concentrations and accelerated hydrolysis of the generated chlorine into hypochlorous acid at high pH can change the electrokinetics and stability of reaction intermediates. We have investigated a unique reaction mechanism of Co3O4 nanoparticles for chloride oxidation at neutral pH. In contrast with water oxidation, the valency of cobalt was not changed during chloride oxidation. Interestingly, a new intermediate of Co-Cl was captured spectroscopically, distinct from the reaction intermediate at acidic pH. In addition, Co3O4 nanoparticles exhibited high selectivity for active chlorine generation at neutral pH, comparable to commercially available RuO2-based catalysts. We believe that this study provides insight into designing efficient electrocatalysts for active chlorine generation at neutral pH, which can be practically applied to electrochemical water treatment coupled to hydrogen production.