Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Small ; 20(19): e2310873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279618

RESUMO

Ferroptosis, characterized by the induction of cell death via lipid peroxidation, has been actively studied over the last few years and has shown the potential to improve the efficacy of cancer nanomedicine in an iron-dependent manner. Radiation therapy, a common treatment method, has limitations as a stand-alone treatment due to radiation resistance and safety as it affects even normal tissues. Although ferroptosis-inducing drugs help alleviate radiation resistance, there are no safe ferroptosis-inducing drugs that can be considered for clinical application and are still in the research stage. Here, the effectiveness of combined treatment with radiotherapy with Fe and hyaluronic acid-based nanoparticles (FHA-NPs) to directly induce ferroptosis, considering the clinical applications is reported. Through the induction of ferroptosis by FHA-NPs and apoptosis by X-ray irradiation, the therapeutic efficiency of cancer is greatly improved both in vitro and in vivo. In addition, Monte Carlo simulations are performed to assess the physical interactions of the X-rays with the iron-oxide nanoparticle. The study provides a deeper understanding of the synergistic effect of ferroptosis and X-ray irradiation combination therapy. Furthermore, the study can serve as a valuable reference for elucidating the role and mechanisms of ferroptosis in radiation therapy.


Assuntos
Ferroptose , Nanopartículas , Ferroptose/efeitos dos fármacos , Humanos , Nanopartículas/química , Animais , Raios X , Linhagem Celular Tumoral , Camundongos , Apoptose/efeitos dos fármacos , Ácido Hialurônico/química , Terapia Combinada
2.
Biomacromolecules ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917335

RESUMO

Wound dressings made from natural-derived polymers are highly valued for their biocompatibility, biodegradability, and biofunctionality. However, natural polymer-based hydrogels can come with their own set of limitations, such as low mechanical strength, limited cell affinity, and the potential cytotoxicity of cross-linkers, which delineate the boundaries of their usage and hamper their practical application. To overcome the limitation of natural-derived polymers, this study utilized a mixture of oxidized alginate and gelatin with 5 mg/mL polycaprolactone (PCL):gelatin nanofiber fragments at a ratio of 7:3 (OGN-7) to develop a hydrogel composite wound dressing that can be injected and has the ability to be remended. The in situ formation of the remendable hydrogel is facilitated by dual cross-linking of oxidized alginate chains with gelatin and PCL/gelatin nanofibers through Schiff-base mechanisms, supported by the physical integration of nanofibers, thereby obviating the need for additional cross-linking agents. Furthermore, OGN-7 exhibits increased stiffness (γ = 79.4-316.3%), reduced gelation time (543 ± 5 to 475 ± 5 s), improved remendability of the hydrogel, and excellent biocompatibility. Notably, OGN-7 achieves full fusion within 1 h of incubation and maintains structural integrity under external stress, effectively overcoming the inherent mechanical weaknesses of natural polymer-based dressings and enhancing biofunctionality. The therapeutic efficacy of OGN-7 was validated through a full-thickness in vivo wound healing analysis, which demonstrated that OGN-7 significantly accelerates wound closure compared to alginate-based dressings and control groups. Histological analysis further revealed that re-epithelialization and collagen deposition were markedly enhanced in the regenerating skin of the OGN-7 group, confirming the superior therapeutic performance of OGN-7. In summary, OGN-7 optimized the synergistic effects of natural polymers, which enhances their collective functionality as a wound dressing and expands their utility across diverse biomedical applications.

3.
Small ; 18(22): e2200245, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315219

RESUMO

Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high-contrast "off-to-on" activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components-incorporated afterglow nanosensor (MANS) is developed for the superoxide-responsive activatable afterglow imaging of cisplatin-induced kidney injury. A multifunctional iridium complex (Ir-OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen-generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir-OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir-OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide-responsive "off-to-on" activatable afterglow luminescence for periods longer than 11 min after the termination of pre-excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin-induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.


Assuntos
Injúria Renal Aguda , Superóxidos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico por imagem , Animais , Cisplatino , Camundongos , Imagem Molecular , Imagem Óptica/métodos
4.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809175

RESUMO

A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evaluated by dual nozzle three-dimensional printing. A highly elastic poly (L-lactide-co-ε-caprolactone) (PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decellularized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaffolds. To prepare the three-dimensional (3D) scaffolds, the PLCL co-polymer was printed with a hot melting extruder system while retaining its physical character, similar to adipose tissue, which is beneficial for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue-derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that the matured adipose-like tissue structures were abundant, and the number of matured capillaries was remarkably higher in the hydrogel-PLCL group than in the PLCL-only group. Moreover, a higher expression of M2 macrophages, which are known to be involved in the remodeling and regeneration of tissues, was detected in the hydrogel-PLCL group by immunofluorescence analysis. Based on these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful for the treatment of large volume fat tissue regeneration.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Hidrogéis/síntese química , Regeneração/genética , Engenharia Tecidual , Tecido Adiposo/química , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Impressão Tridimensional , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos
5.
Biomacromolecules ; 20(9): 3392-3398, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31385692

RESUMO

Exosomes are extracellular vesicles (EVs) that have attracted attention because of their important biological roles in intercellular communication and transportation of various biomolecules, including proteins and genetic materials. However, due to difficulties in their selective capture and detection, further application of exosomes remains challenging. To detect EVs, we fabricated a liposomal biosensor based on polydiacetylene (PDA), a conjugate polymer that has been widely used in sensing applications derived from its unique optical properties. To confer selectivity and sensitivity to the sensory material, antibodies targeting CD63, a membrane protein exclusively found in exosomes, were attached to the PDA liposomes and phospholipid molecules were incorporated into the PDA vesicles. Signal analysis derived from PDA liposomes for exosome detection and quantification was performed by observing colorimetric changes triggered by the ligand-receptor interaction of PDA vesicles. Visual, UV-visible, and fluorescence spectroscopic methods were used to obtain signals from the PDA lipid immunosensor, which achieved a detection limit of 3 × 108 vesicles/mL, the minimum concentration that can be used in practical applications. The strategies used in the system have the potential to expand into the field of dealing with exosomes.


Assuntos
Técnicas Biossensoriais , Exossomos/química , Lipossomos/química , Polímeros/química , Anticorpos/química , Anticorpos/imunologia , Anticorpos/isolamento & purificação , Colorimetria , Exossomos/genética , Humanos , Limite de Detecção , Lipossomos/farmacologia , Polímero Poliacetilênico/química , Polímeros/farmacologia , Poli-Inos/química , Espectrometria de Fluorescência , Tetraspanina 30/química , Tetraspanina 30/imunologia , Tetraspanina 30/isolamento & purificação
6.
Biomacromolecules ; 20(2): 1068-1076, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30645935

RESUMO

Most nanoparticle-based bioresearch for clinical applications is unable to overcome the clinical barriers of efficacy (e.g., sensitivity and selectivity), safety for human use, and scalability for mass-production processes. Here, we proposed a promising concept of using a biocompatible nanocarrier that delivers natural fluorescent precursors into cancerous cells. The nanocarrier is a biopolymeric nanoparticle that can be easily loaded with fluorescent precursors to form a fluorescent moiety via a biosynthesis pathway. Once delivered into cancerous cells, the nanocarriers are selectively turned on and distinctively fluoresce upon excitation. We, therefore, demonstrated the efficacy of the selective turn-on fluorescence of the nanocarriers in in vitro coculture models and in vivo tumor-bearing models.


Assuntos
Materiais Biocompatíveis/metabolismo , Portadores de Fármacos/metabolismo , Nanopartículas/metabolismo , Neoplasias/metabolismo , Células 3T3 , Animais , Vias Biossintéticas/efeitos dos fármacos , Linhagem Celular , Fluorescência , Humanos , Camundongos
7.
Nat Mater ; 14(12): 1269-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26366848

RESUMO

The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.


Assuntos
Desenvolvimento Ósseo , Matriz Extracelular/fisiologia , Hidrogéis , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Materiais Biocompatíveis , Elasticidade
8.
Mol Pharm ; 13(7): 2204-13, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27163860

RESUMO

Invasion and metastasis of cancer directly related to human death have been associated with interactions among many different types of cells and three-dimensional (3D) tissue matrices. Precise mechanisms related to cancer invasion and metastasis still remain unknown due to their complexities. Development of tumor microenvironment (TME)-mimicking system could play a key role in understanding cancer environments and in elucidating the relating phenomena and their driving forces. Here we report a facile and novel platform of 3D cancer cell-clusters using human adipose-derived mesenchymal stem cells (hASCs) and breast cancer cells (MDA-MB-231) within a collagen gel matrix to show cancer invasion in the cell and extracellular matrix (ECM). Both clusters A (hASC only) and AC (hASC and MDA-MB-231) exhibited different behaviors and expressions of migration and invasion, as observed by the relating markers such as fibronectin, α-SMA, and CXCR4. hASCs showed a protrusive migration from a cluster center, whereas MDA-MB-231 spread out radially followed by hASC migration. Finally, the effect of matrix was further discussed by varying collagen gel densities. The new biomimetic system of 3D cancer clusters developed here has the potential to be utilized for research on migration and invasion of cancer cells in extracellular matrices.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Células-Tronco Mesenquimais/patologia , Invasividade Neoplásica/patologia , Biomimética/métodos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Matriz Extracelular/patologia , Feminino , Fibronectinas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral/fisiologia
9.
Mol Ther ; 22(7): 1243-1253, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24769910

RESUMO

Tissue reinnervation following trauma, disease, or transplantation often presents a significant challenge. Here, we show that the delivery of vascular endothelial growth factor (VEGF) from alginate hydrogels ameliorates loss of skeletal muscle innervation after ischemic injury by promoting both maintenance and regrowth of damaged axons in mice. Nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF) mediated VEGF-induced axonal regeneration, and the expression of both is induced by VEGF presentation. Using both in vitro and in vivo modeling approaches, we demonstrate that the activity of NGF and GDNF regulates VEGF-driven angiogenesis, controlling endothelial cell sprouting and blood vessel maturation. Altogether, these studies produce evidence of new mechanisms of VEGF action, further broaden the understanding of the roles of NGF and GDNF in angiogenesis and axonal regeneration, and suggest approaches to improve axonal and ischemic tissue repair therapies.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Músculo Esquelético/inervação , Fator de Crescimento Neural/metabolismo , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Camundongos , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Cicatrização
10.
Biomacromolecules ; 15(1): 380-90, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24345197

RESUMO

Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.


Assuntos
Alginatos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/administração & dosagem , Metaloproteinases da Matriz/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Alginatos/química , Animais , Células Cultivadas , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/química , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Injeções , Masculino , Metaloproteinases da Matriz/química , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos SCID
11.
Proc Natl Acad Sci U S A ; 108(1): 67-72, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21149682

RESUMO

Porous biomaterials have been widely used as scaffolds in tissue engineering and cell-based therapies. The release of biological agents from conventional porous scaffolds is typically governed by molecular diffusion, material degradation, and cell migration, which do not allow for dynamic external regulation. We present a new active porous scaffold that can be remotely controlled by a magnetic field to deliver various biological agents on demand. The active porous scaffold, in the form of a macroporous ferrogel, gives a large deformation and volume change of over 70% under a moderate magnetic field. The deformation and volume variation allows a new mechanism to trigger and enhance the release of various drugs including mitoxantrone, plasmid DNA, and a chemokine from the scaffold. The porous scaffold can also act as a depot of various cells, whose release can be controlled by external magnetic fields.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos/métodos , Géis/uso terapêutico , Magnetismo/métodos , Polímeros/uso terapêutico , Alicerces Teciduais , Quimiocinas/administração & dosagem , DNA/administração & dosagem , Preparações de Ação Retardada/uso terapêutico , Mitoxantrona/administração & dosagem , Porosidade
12.
Nanoscale ; 16(14): 7110-7122, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501279

RESUMO

This study was initiated due to the physically unexplainable tumor controls resulting from metal nanoparticle (MNP) experiments even under MV X-ray irradiation. A more accurate explanation of the mechanism of radiosensitization induced by MNP is warranted, considering both its physical dose enhancement and biological sensitization, as related research is lacking. Thus, we aimed to examine the intricate dynamics involved in MNP-induced radiosensitization. We conducted specifically designed clonogenic assays for the A549 lung cancer cell line with MNP irradiated by 6 MV and 300 kVp X-rays. Two types of MNP were employed: one based on iron oxide, promoting ferroptosis, and the other on gold nanoparticles known for inducing a significant dose enhancement, particularly at low-energy X-rays. We introduced the lethality enhancement factor (LEF) as the fraction in the cell killing attributed to biological sensitization. Subsequently, Monte Carlo simulations were conducted to evaluate the radial dose profiles for each MNP, corresponding to the physical enhancement. Finally, the local effect model was applied to the clonogenic assay results on real cell images. The LEF and the dose enhancement in the cytoplasm were incorporated to increase the accuracy in the average lethal events and, consequently, in the survival fraction. The results reveal an increased cell killing for both of the MNP under MV and kV X-ray irradiation. In both types of MNP, the LEF reveals a biological sensitization evident. The sensitizer enhancement ratio, derived from the calculations, exhibited only 3% and 1% relative differences compared to the conventional linear-quadratic model for gold and ferroptosis inducer nanoparticles, respectively. These findings indicate that MNPs sensitize cells via radiation through mechanisms akin to ferroptosis inducers, not exclusively relying on a physical dose enhancement. Their own contributions to survival fractions were successfully integrated into computational modeling.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Raios X , Ouro/farmacologia , Simulação por Computador , Método de Monte Carlo
13.
Mater Today Bio ; 26: 101061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711937

RESUMO

Rheumatoid arthritis (RA) is known to be caused by autoimmune disorders and can be partially alleviated through Disease-Modifying Antirheumatic Drugs (DMARDs) therapy. However, due to significant variations in the physical environment and condition of each RA patient, the types and doses of DMARDs prescribed can differ greatly. Consequently, there is a need for a platform based on patient-derived cells to determine the effectiveness of specific DMARDs for individual patient. In this study, we established an RA three-dimensional (3D) spheroid that mimics the human body's 3D environment, enabling high-throughput assays by culturing patient-derived synovial cells on a macroscale-patterned polycaprolactone (PCL) scaffold. Fibroblast-like synoviocytes (FLSs) from patient and human umbilical vein endothelial cells (HUVECs) were co-cultured to simulate vascular delivery. Additionally, RA characteristics were identified at both the genetic and cytokine levels using real-time polymerase chain reaction (RT-qPCR) and dot blot assay. The similarities in junctions and adhesion were demonstrated in both actual RA patient tissues and 3D spheroids. The 3D RA spheroid was treated with representative DMARDs, observing changes in reactive oxygen species (ROS) levels, lactate dehydrogenase (LDH) levels, and inflammatory cytokine responses to confirm the varying cell reactions depending on the DMARDs used. This study underscores the significance of the 3D drug screening platform, which can be applied to diverse inflammatory disease treatments as a personalized drug screening system. We anticipate that this platform will become an indispensable tool for advancing and developing personalized DMARD treatment strategies.

14.
Int J Biol Macromol ; 262(Pt 2): 130194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360222

RESUMO

Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.


Assuntos
Gelatina , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Metacrilatos/química , Impressão Tridimensional , Materiais Biocompatíveis , Engenharia Tecidual
15.
Nat Commun ; 15(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169465

RESUMO

Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.


Assuntos
Pele Artificial , Humanos , Biônica , Tato/fisiologia , Pele , Cicatrização , Órgãos dos Sentidos
16.
NPJ Regen Med ; 8(1): 68, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097595

RESUMO

Retinitis pigmentosa (RP) is an outer retinal degenerative disease that can lead to photoreceptor cell death and profound vision loss. Although effective regulation of intraretinal inflammation can slow down the progression of the disease, an efficient anti-inflammatory treatment strategy is still lacking. This study reports the fabrication of a hyaluronic acid-based inflammation-responsive hydrogel (IRH) and its epigenetic regulation effects on retinal degeneration. The injectable IRH was designed to respond to cathepsin overexpression in an inflammatory environment. The epigenetic drug, the enhancer of zeste homolog 2 (EZH2) inhibitors, was loaded into the hydrogel to attenuate inflammatory factors. On-demand anti-inflammatory effects of microglia cells via the drug-loaded IRH were verified in vitro and in vivo retinal degeneration 10 (rd10) mice model. Therefore, our IRH not only reduced intraretinal inflammation but also protected photoreceptors morphologically and functionally. Our results suggest the IRH reported here can be used to considerably delay vision loss caused by RP.

17.
ACS Appl Bio Mater ; 6(5): 1774-1786, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058290

RESUMO

Wound dressings have been designed to provide the optimal environment to fibroblasts, keratinocytes, and macrophages to promote wound healing while inhibiting potential microbial infection. Gelatin methacrylate (GelMA) is a photopolymerizable hydrogel with a gelatin backbone that contains natural cell binding motifs such as arginine-glycine-aspartic acid (RGD) and MMP-sensitive degradation sites, making it an ideal material for wound dressing. However, GelMA alone is unable to stably protect the wound and regulate cellular activities due to its weak mechanical properties and nonmicropatterned surface, limiting its application as a wound dressing. Herein, we report the development of a hydrogel-nanofiber composite wound dressing utilizing GelMA and poly(caprolactone) (PCL)/gelatin nanofiber, which can systematically manage the skin regeneration process with an enhanced mechanical property and micropatterned surface. GelMA sandwiched between electrospun aligned and interlaced nanofibers that mimic epidermis and dermis layers, respectively, increased the stiffness of the resulting hydrogel composite with a comparable swelling rate as GelMA. Fabricated hydrogel composite was determined to be biocompatible and nontoxic. In addition to the beneficial effect of GelMA in accelerating wound healing, subsequent histological analysis revealed upregulated re-epithelialization of granulation tissue and deposition of mature collagen. Hydrogel composite interacted with fibroblasts to regulate their morphology, proliferation, and collagen synthesis, as well as the expression of α-SMA, TGF-ß, and collagen I and III during the wound healing process both in vitro and in vivo. Taken together, we propose hydrogel/nanofiber composite as a wound dressing of the next generation that can induce skin tissue layer regeneration beyond the basic wound closure promotion of present dressings.


Assuntos
Hidrogéis , Nanofibras , Hidrogéis/química , Gelatina/farmacologia , Gelatina/química , Nanofibras/uso terapêutico , Nanofibras/química , Mecanotransdução Celular , Cicatrização , Colágeno/farmacologia , Bandagens
18.
Mater Today Bio ; 21: 100685, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37545560

RESUMO

Extrusion-based bioprinting technology is widely used for tissue regeneration and reconstruction. However, the method that uses only hydrogel as the bioink base material exhibits limited biofunctional properties and needs improvement to achieve the desired tissue regeneration. In this study, we present a three-dimensionally printed bioactive microparticle-loaded scaffold for use in bone regeneration applications. The unique structure of the microparticles provided sustained release of growth factor for > 4 weeks without the use of toxic or harmful substances. Before and after printing, the optimal particle ratio in the bioink for cell viability demonstrated a survival rate of ≥ 85% over 7 days. Notably, osteogenic differentiation and mineralization-mediated by human periosteum-derived cells in scaffolds with bioactive microparticles-increased over a 2-week interval. Here, we present an alternative bioprinting strategy that uses the sustained release of bioactive microparticles to improve biofunctional properties in a manner that is acceptable for clinical bone regeneration applications.

19.
Mater Today Bio ; 18: 100541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36647537

RESUMO

Bioresorbable implantable medical devices can be employed in versatile clinical scenarios that burden patients with complications and surgical removal of conventional devices. However, a shortage of suitable electricalinterconnection materials limits the development of bioresorbable electronic systems. Therefore, this study highlights a highly conductive, naturally resorbable paste exhibiting enhanced electrical conductivity and mechanical stability that can solve the existing problems of bioresorbable interconnections. Multifaceted experiments on electrical and physical properties were used to optimize the composition of pastes containing beeswax, submicron tungstenparticles, and glycofurol. These pastes embody isotropic conductive paths for three-dimensional interconnects and function as antennas, sensors, and contact pads for bioresorbable electronic devices. The degradation behavior in aqueous solutions was used to assess its stability and ability to retain electrical conductance (∼7 â€‹kS/m) and structural form over the requisite dissolution period. In vitro and in vivo biocompatibility tests clarified the safety of the paste as an implantable material.

20.
Biomater Res ; 27(1): 60, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349810

RESUMO

BACKGROUND: Patients face a serious threat if a solid tumor leaves behind partial residuals or cannot be completely removed after surgical resection. Immunotherapy has attracted attention as a method to prevent this condition. However, the conventional immunotherapy method targeting solid tumors, that is, intravenous injection, has limitations in homing in on the tumor and in vivo expansion and has not shown effective clinical results. METHOD: To overcome these limitations, NK cells (Natural killer cells) were encapsulated in micro/macropore-forming hydrogels using 3D bioprinting to target solid tumors. Sodium alginate and gelatin were used to prepare micro-macroporous hydrogels. The gelatin contained in the alginate hydrogel was removed because of the thermal sensitivity of the gelatin, which can generate interconnected micropores where the gelatin was released. Therefore, macropores can be formed through bioprinting and micropores can be formed using thermally sensitive gelatin to make macroporous hydrogels. RESULTS: It was confirmed that intentionally formed micropores could help NK cells to aggregate easily, which enhances cell viability, lysis activity, and cytokine release. Macropores can be formed using 3D bioprinting, which enables NK cells to receive the essential elements. We also characterized the functionality of NK 92 and zEGFR-CAR-NK cells in the pore-forming hydrogel. The antitumor effects on leukemia and solid tumors were investigated using an in vitro model. CONCLUSION: We demonstrated that the hydrogel encapsulating NK cells created an appropriate micro-macro environment for clinical applications of NK cell therapy for both leukemia and solid tumors via 3D bioprinting. 3D bioprinting makes macro-scale clinical applications possible, and the automatic process shows potential for development as an off-the-shelf immunotherapy product. This immunotherapy system could provide a clinical option for preventing tumor relapse and metastasis after tumor resection. Micro/macropore-forming hydrogel with NK cells fabricated by 3D bioprinting and implanted into the tumor site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA