Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 32(2): 468-76, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26694857

RESUMO

Cyclic voltammograms for the reduction of aryldiazonium ions at glassy carbon electrodes are often, but not always, reported to show two peaks. The origin of this intriguing behavior remains controversial. Using 4-nitrobenzenediazonium ion (NBD), the most widely studied aryldiazonium salt, we make a detailed examination of the electroreduction processes in acetonitrile solution. We confirm that deposition of film can occur during both reduction processes. Film thickness measurements using atomic force microscopy reveal that multilayer films of very similar thickness are formed when reduction is carried out at either peak, even though the film formed at the more negative potential is significantly more blocking to solution redox probes. These and other aspects of the electrochemistry are consistent with the operation of a surface-catalyzed reduction step (proceeding at a clean surface only) followed by an uncatalyzed reduction at a more negative potential. The catalyzed reduction proceeds at both edge-plane and basal-plane graphite materials, suggesting that particular carbon surface sites are not required. The unusual aspect of aryldiazonium ion electrochemistry is that unlike other surface-catalyzed reactions, both processes are seen in a single voltammetric scan at an initially clean electrode because the conditions for observing the uncatalyzed reaction are produced by film deposition during the first catalyzed reduction step.

2.
Langmuir ; 32(11): 2626-37, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26918953

RESUMO

A new strategy for preparation of robust multifunctional low nanometer thickness monolayers on carbon substrates is presented. Beginning with protected aryldiazonium salts, sparse monolayers of ethynyl-, amino-, and carboxy-terminated tethers are covalently anchored to the surface. The layers are then backfilled with a second modifier via the nucleophilic addition of an amine derivative to the surface. Through use of electroactive moieties coupled to the tethers, and an electroactive amine for backfilling, electrochemical measurements reveal that backfilling approximately doubles the surface concentration of the monolayer. Cyclic voltammetry of solution-based redox probes at the modified surfaces is consistent with the expected blocking properties at various stages of surface preparation. Fractional surface coverages of the layers are estimated using electrochemically determined surface concentrations of modifiers and computationally derived modifier footprints. Assuming free rotation of the coupled ferrocenyl or nitrophenyl groups leads to physically unreasonable fractional surface coverages, indicating that these larger modifiers must be rotationally restricted. Using a conformationally constrained model produces lower bound estimates of the total fractional surface coverage close to 0.4, with tether-only coverages close to 0.2. The backfilled tether layers constitute practical platforms for controlled construction of complex interfaces with many potential applications including sensing, molecular electronics, and catalysis.

3.
Langmuir ; 31(18): 5071-7, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25874652

RESUMO

Aminophenyl and aminomethylphenyl monolayers have been electrografted to glassy carbon and pyrolyzed photoresist film from the corresponding diazonium ions using a protection-deprotection strategy based on Boc (tert-butyloxycarbonyl) and Fmoc (fluorenylmethyloxycarbonyl) groups. After grafting and then deprotecting films of Boc-NH-Ar, Fmoc-NH-Ar, and Fmoc-NH-CH2-Ar, depth profiling by atomic force microscopy confirmed that the resulting amine-terminated films were monolayers. In contrast, after deprotection, Boc-NH-CH2-Ar gave a multilayer film. Electroactive carboxylic acid derivatives were coupled to the monolayers through amide linkages. Electrochemical measurements revealed that the deprotected Fmoc-NH-CH2-Ar monolayer gave the highest surface concentration of coupled nitrophenyl and ferrocenyl groups and DFT calculations established that this monolayer has the highest theoretical surface concentration of those examined.

4.
Langmuir ; 30(24): 7104-11, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24874712

RESUMO

Electrografting of aryl films to electrode surfaces from diazonium ion solutions is a widely used method for preparation of modified electrodes. In the absence of deliberate measures to limit film growth, the usual film structure is a loosely packed multilayer. For some applications, monolayer films are advantageous; our interest is in preparing well-defined monolayers of reactive tethers for further on-surface chemistry. Here, we describe the synthesis of an aryl diazonium salt with a protected carboxylic acid substituent. After electrografting to glassy carbon electrodes and subsequent deprotection, the layer is reacted with amine derivatives. Electrochemistry and atomic force microscopy are used to monitor the grafting, deprotection, and subsequent coupling steps. Attempts to follow the same procedures on gold surfaces suggest that the grafted layer is not stable in these reaction conditions.

5.
Langmuir ; 29(9): 3133-9, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23398449

RESUMO

Sequential electrografting at glassy carbon from aryldiazonium salt solutions, or an aryldiazonium salt followed by an arylhydrazine, leads to the formation of covalently attached monolayer films incorporating two modifiers. In the first step, a 4-((triisopropylsilyl)ethynyl)phenyl film is electrografted to the surface, followed by removal of the triisopropylsilyl group to give a submonolayer of phenylethynylene groups. Two general strategies can then be applied to "fill in" the sparse monolayer with a second modifier. In the first route, nitrophenyl groups are grafted to the phenylethynylene-modified surface by the oxidation of 4-nitrophenylhydrazine. Ferrocene can be coupled to the terminal alkyne groups on the surface via a click reaction with azidomethylferrocene; an electrochemical measurement of the amount of immobilized ferrocene demonstrates that the phenylethynylene layer retains close to full reactivity after the second grafting step. In the alternative strategy, ferrocene is coupled to the phenylethynylene layer prior to grafting nitrophenyl groups by the reduction of the 4-nitrobenzenediazonium ion or by the oxidation of 4-nitrophenylhydrazine. For all approaches, the optimization of the grafting conditions gives surface concentrations of ferrocene and nitrophenyl groups that are consistent with those of a mixed monolayer. The stepwise generation of mixed monolayers is also monitored by film thickness measurements by depth profiling using the atomic force microscope. Thickness values are consistent with the proposed film structure in each preparation step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA