Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2300644120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306481

RESUMO

It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Células Endoteliais , Proteoma , Peptídeos
2.
J Am Chem Soc ; 145(48): 26095-26105, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37989570

RESUMO

Peptide-induced transmembrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions, and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore-forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small-angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that although AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/química , Bicamadas Lipídicas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Sequência de Aminoácidos
3.
Proc Natl Acad Sci U S A ; 116(14): 6944-6953, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877253

RESUMO

Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.


Assuntos
Células Eucarióticas , Reconhecimento Automatizado de Padrão , Peptídeos/genética , Análise de Sequência de Proteína , Peptídeos/química , Estrutura Secundária de Proteína
4.
Angew Chem Int Ed Engl ; 61(25): e202108501, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35352449

RESUMO

Antimicrobial peptides (AMPs) preferentially permeate prokaryotic membranes via electrostatic binding and membrane remodeling. Such action is drastically suppressed by high salt due to increased electrostatic screening, thus it is puzzling how marine AMPs can possibly work. We examine as a model system, piscidin-1, a histidine-rich marine AMP, and show that ion-histidine interactions play unanticipated roles in membrane remodeling at high salt: Histidines can simultaneously hydrogen-bond to a phosphate and coordinate with an alkali metal ion to neutralize phosphate charge, thereby facilitating multidentate bonds to lipid headgroups in order to generate saddle-splay curvature, a prerequisite to pore formation. A comparison among Na+ , K+ , and Cs+ indicates that histidine-mediated salt tolerance is ion specific. We conclude that histidine plays a unique role in enabling protein/peptide-membrane interactions that occur in marine or other high-salt environment.


Assuntos
Peptídeos Antimicrobianos , Histidina , Histidina/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Fosfatos , Tolerância ao Sal
5.
Semin Cell Dev Biol ; 88: 173-184, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29432957

RESUMO

Antimicrobial peptides (AMPs) are typically thought of as molecular hole punchers that directly kill pathogens by membrane permeation. However, recent work has shown that AMPs are pleiotropic, multifunctional molecules that can strongly modulate immune responses. In this review, we provide a historical overview of the immunomodulatory properties of natural and synthetic antimicrobial peptides, with a special focus on human cathelicidin and defensins. We also summarize the various mechanisms of AMP immune modulation and outline key structural rules underlying the recently-discovered phenomenon of AMP-mediated Toll-like receptor (TLR) signaling. In particular, we describe several complementary studies demonstrating how AMPs self-assemble with nucleic acids to form nanocrystalline complexes that amplify TLR-mediated inflammation. In a broader scope, we discuss how this new conceptual framework allows for the prediction of immunomodulatory behavior in AMPs, how the discovery of hidden antimicrobial activity in known immune signaling proteins can inform these predictions, and how these findings reshape our understanding of AMPs in normal host defense and autoimmune disease.


Assuntos
Doenças Autoimunes/imunologia , Catelicidinas/imunologia , Defensinas/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Catelicidinas/química , Catelicidinas/genética , DNA/química , DNA/genética , DNA/imunologia , Defensinas/química , Defensinas/genética , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Imunomodulação , Ligação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , Receptores Toll-Like/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-32423961

RESUMO

Candida albicans is a commensal organism that causes life-threatening or life-altering opportunistic infections. Treatment of Candida infections is limited by the paucity of antifungal drug classes. Naturally occurring antimicrobial peptides are promising agents for drug development. CCL28 is a CC chemokine that is abundant in saliva and has in vitro antimicrobial activity. In this study, we examine the in vivo Candida killing capacity of CCL28 in oropharyngeal candidiasis as well as the spectrum and mechanism of anti-Candida activity. In the mouse model of oropharyngeal candidiasis, application of wild-type CCL28 reduces oral fungal burden in severely immunodeficient mice without causing excessive inflammation or altering tissue neutrophil recruitment. CCL28 is effective against multiple clinical strains of C. albicans Polyamine protein transporters are not required for CCL28 anti-Candida activity. Both structured and unstructured CCL28 proteins show rapid and sustained fungicidal activity that is superior to that of clinical antifungal agents. Application of wild-type CCL28 to C. albicans results in membrane disruption as measured by solute movement, enzyme leakage, and induction of negative Gaussian curvature on model membranes. Membrane disruption is reduced in CCL28 lacking the functional C-terminal tail. Our results strongly suggest that CCL28 can exert antifungal activity in part via membrane permeation and has potential for development as an anti-Candida therapeutic agent without inflammatory side effects.


Assuntos
Antifúngicos , Candidíase Bucal , Quimiocinas CC/farmacologia , Animais , Antifúngicos/farmacologia , Candida albicans , Candidíase Bucal/tratamento farmacológico , Quimiocinas , Camundongos , Testes de Sensibilidade Microbiana
7.
J Immunol ; 198(10): 4036-4045, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411186

RESUMO

Type I IFNs are a cytokine family essential for antiviral defense. More recently, type I IFNs were shown to be important during bacterial infections. In this article, we show that, in addition to known cytokine functions, IFN-ß is antimicrobial. Parts of the IFN-ß molecular surface (especially helix 4) are cationic and amphipathic, both classic characteristics of antimicrobial peptides, and we observed that IFN-ß can directly kill Staphylococcus aureus Further, a mutant S. aureus that is more sensitive to antimicrobial peptides was killed more efficiently by IFN-ß than was the wild-type S. aureus, and immunoblotting showed that IFN-ß interacts with the bacterial cell surface. To determine whether specific parts of IFN-ß are antimicrobial, we synthesized IFN-ß helix 4 and found that it is sufficient to permeate model prokaryotic membranes using synchrotron x-ray diffraction and that it is sufficient to kill S. aureus These results suggest that, in addition to its well-known signaling activity, IFN-ß may be directly antimicrobial and be part of a growing family of cytokines and chemokines, called kinocidins, that also have antimicrobial properties.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Interferon beta/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Interferon beta/química , Interferon beta/metabolismo , Interferon beta/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Difração de Raios X
8.
Curr Opin Colloid Interface Sci ; 38: 204-213, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31093008

RESUMO

Antimicrobial peptides (AMPs) collectively constitute a key component of the host innate immune system. They span a diverse space of sequences and can be α-helical, ß-sheet, or unfolded in structure. Despite a wealth of knowledge about them from decades of experiments, it remains difficult to articulate general principles governing such peptides. How are they different from other molecules that are also cationic and amphiphilic? What other functions, in immunity and otherwise, are enabled by these simple sequences? In this short review, we present some recent work that engages these questions using methods not usually applied to AMP studies, such as machine learning. We find that not only do AMP-like sequences confer membrane remodeling activity to an unexpectedly broad range of protein classes, their cationic and amphiphilic signature also allows them to act as meta-antigens and self-assemble with immune ligands into nanocrystalline complexes for multivalent presentation to Toll-like receptors.

9.
Bioconjug Chem ; 29(7): 2127-2139, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29771496

RESUMO

A common bioengineering strategy to add function to a given molecule is by conjugation of a new moiety onto that molecule. Adding multiple functions in this way becomes increasingly challenging and leads to composite molecules with larger molecular weights. In this review, we attempt to gain a new perspective by looking at this problem in reverse, by examining nature's strategies of multiplexing different functions into the same pleiotropic molecule using emerging analysis techniques such as machine learning. We concentrate on examples from the innate immune system, which employs a finite repertoire of molecules for a broad range of tasks. An improved understanding of how diverse functions are multiplexed into a single molecule can inspire new approaches for the deterministic design of multifunctional molecules.


Assuntos
Desenho de Fármacos , Pleiotropia Genética , Imunidade Inata , Proteínas/genética , Animais , Bioengenharia/métodos , Humanos , Proteínas/imunologia
10.
Proc Natl Acad Sci U S A ; 112(35): 10926-31, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283363

RESUMO

The C-terminal transmembrane domain (TMD) of viral fusion proteins such as HIV gp41 and influenza hemagglutinin (HA) is traditionally viewed as a passive α-helical anchor of the protein to the virus envelope during its merger with the cell membrane. The conformation, dynamics, and lipid interaction of these fusion protein TMDs have so far eluded high-resolution structure characterization because of their highly hydrophobic nature. Using magic-angle-spinning solid-state NMR spectroscopy, we show that the TMD of the parainfluenza virus 5 (PIV5) fusion protein adopts lipid-dependent conformations and interactions with the membrane and water. In phosphatidylcholine (PC) and phosphatidylglycerol (PG) membranes, the TMD is predominantly α-helical, but in phosphatidylethanolamine (PE) membranes, the TMD changes significantly to the ß-strand conformation. Measured order parameters indicate that the strand segments are immobilized and thus oligomerized. (31)P NMR spectra and small-angle X-ray scattering (SAXS) data show that this ß-strand-rich conformation converts the PE membrane to a bicontinuous cubic phase, which is rich in negative Gaussian curvature that is characteristic of hemifusion intermediates and fusion pores. (1)H-(31)P 2D correlation spectra and (2)H spectra show that the PE membrane with or without the TMD is much less hydrated than PC and PG membranes, suggesting that the TMD works with the natural dehydration tendency of PE to facilitate membrane merger. These results suggest a new viral-fusion model in which the TMD actively promotes membrane topological changes during fusion using the ß-strand as the fusogenic conformation.


Assuntos
Fusão Celular , Proteína gp41 do Envelope de HIV/química , Hemaglutininas Virais/química , Proteínas Virais de Fusão/química , Lipídeos de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X
11.
Proc Natl Acad Sci U S A ; 112(43): 13155-60, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460016

RESUMO

α-Helical antimicrobial peptides (AMPs) generally have facially amphiphilic structures that may lead to undesired peptide interactions with blood proteins and self-aggregation due to exposed hydrophobic surfaces. Here we report the design of a class of cationic, helical homo-polypeptide antimicrobials with a hydrophobic internal helical core and a charged exterior shell, possessing unprecedented radial amphiphilicity. The radially amphiphilic structure enables the polypeptide to bind effectively to the negatively charged bacterial surface and exhibit high antimicrobial activity against both gram-positive and gram-negative bacteria. Moreover, the shielding of the hydrophobic core by the charged exterior shell decreases nonspecific interactions with eukaryotic cells, as evidenced by low hemolytic activity, and protects the polypeptide backbone from proteolytic degradation. The radially amphiphilic polypeptides can also be used as effective adjuvants, allowing improved permeation of commercial antibiotics in bacteria and enhanced antimicrobial activity by one to two orders of magnitude. Designing AMPs bearing this unprecedented, unique radially amphiphilic structure represents an alternative direction of AMP development; radially amphiphilic polypeptides may become a general platform for developing AMPs to treat drug-resistant bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana
12.
Biochim Biophys Acta ; 1838(9): 2269-79, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24743021

RESUMO

Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Membrana Celular/química , Escherichia coli/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Nylons/química , Polímeros/química
13.
Proc Natl Acad Sci U S A ; 109(24): 9378-83, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22619329

RESUMO

Tank-binding kinase (TBK)1 plays a central role in innate immunity: it serves as an integrator of multiple signals induced by receptor-mediated pathogen detection and as a modulator of IFN levels. Efforts to better understand the biology of this key immunological factor have intensified recently as growing evidence implicates aberrant TBK1 activity in a variety of autoimmune diseases and cancers. Nevertheless, key molecular details of TBK1 regulation and substrate selection remain unanswered. Here, structures of phosphorylated and unphosphorylated human TBK1 kinase and ubiquitin-like domains, combined with biochemical studies, indicate a molecular mechanism of activation via transautophosphorylation. These TBK1 structures are consistent with the tripartite architecture observed recently for the related kinase IKKß, but domain contributions toward target recognition appear to differ for the two enzymes. In particular, both TBK1 autoactivation and substrate specificity are likely driven by signal-dependent colocalization events.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Catálise , Ativação Enzimática , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/química
14.
J Biol Chem ; 288(6): 3753-67, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23277359

RESUMO

The adenomatous polyposis coli (APC) protein functions as a negative regulator of the Wnt signaling pathway. In this capacity, APC forms a "destruction complex" with Axin, CK1α, and GSK3ß to foster phosphorylation of the Wnt effector ß-catenin earmarking it for Lys-48-linked polyubiquitylation and proteasomal degradation. APC is conjugated with Lys-63-linked ubiquitin chains when it is bound to Axin, but it is unclear whether this modification promotes the APC-Axin interaction or confers upon APC an alternative function in the destruction complex. Here we identify HectD1 as a candidate E3 ubiquitin ligase that modifies APC with Lys-63 polyubiquitin. Knockdown of HectD1 diminished APC ubiquitylation, disrupted the APC-Axin interaction, and augmented Wnt3a-induced ß-catenin stabilization and signaling. These results indicate that HectD1 promotes the APC-Axin interaction to negatively regulate Wnt signaling.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteína Axina/metabolismo , Poliubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Proteína Axina/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Poliubiquitina/genética , Ligação Proteica , Ubiquitina-Proteína Ligases/genética
15.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546874

RESUMO

Peptide induced trans-membrane pore formation is commonplace in biology. Examples of transmembrane pores include pores formed by antimicrobial peptides (AMPs) and cell penetrating peptides (CPPs) in bacterial membranes and eukaryotic membranes, respectively. In general, however, transmembrane pore formation depends on peptide sequences, lipid compositions and intensive thermodynamic variables and is difficult to observe directly under realistic solution conditions, with structures that are challenging to measure directly. In contrast, the structure and phase behavior of peptide-lipid systems are relatively straightforward to map out experimentally for a broad range of conditions. Cubic phases are often observed in systems involving pore forming peptides; however, it is not clear how the structural tendency to induce negative Gaussian curvature (NGC) in such phases is quantitatively related to the geometry of biological pores. Here, we leverage the theory of anisotropic inclusions and devise a facile method to estimate transmembrane pore sizes from geometric parameters of cubic phases measured from small angle X-ray scattering (SAXS) and show that such estimates compare well with known pore sizes. Moreover, our model suggests that whereas AMPs can induce stable transmembrane pores for membranes with a broad range of conditions, pores formed by CPPs are highly labile, consistent with atomistic simulations.

16.
mBio ; 12(4): e0154821, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34425706

RESUMO

During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.


Assuntos
Capsídeo/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Metabolismo dos Lipídeos , Membrana Nuclear/metabolismo , Liberação de Vírus , Animais , Núcleo Celular/metabolismo , Chlorocebus aethiops , Humanos , Membrana Nuclear/virologia , Fosforilação , Eletricidade Estática , Células Vero , Montagem de Vírus , Replicação Viral
17.
ACS Nano ; 15(10): 15930-15939, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34586780

RESUMO

Neutrophils are crucial for host defense but are notorious for causing sterile inflammatory damage. Activated neutrophils in inflamed tissue can liberate histone H4, which was recently shown to perpetuate inflammation by permeating membranes via the generation of negative Gaussian curvature (NGC), leading to lytic cell death. Here, we show that it is possible to build peptides or proteins that cancel NGC in membranes and thereby suppress pore formation, and demonstrate that they can inhibit H4 membrane remodeling and thereby reduce histone H4-driven lytic cell death and resultant inflammation. As a demonstration of principle, we use apolipoprotein A-I (apoA-I) mimetic peptide apoMP1. X-ray structural studies and theoretical calculations show that apoMP1 induces nanoscopic positive Gaussian curvature (PGC), which interacts with the NGC induced by the N-terminus of histone H4 (H4n) to inhibit membrane permeation. Interestingly, we show that induction of PGC can inhibit membrane-permeating activity in general and "turn off" diverse membrane-permeating molecules besides H4n. In vitro experiments show an apoMP1 dose-dependent rescue of H4 cytotoxicity. Using a mouse model, we show that tissue accumulation of neutrophils, release of neutrophil extracellular traps (NETs), and extracellular H4 all strongly correlate independently with local tissue cell death in multiple organs, but administration of apoMP1 inhibits histone H4-mediated cytotoxicity and strongly prevents organ tissue damage.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Morte Celular , Histonas , Peptídeos/farmacologia
18.
Biochim Biophys Acta Biomembr ; 1862(8): 183302, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311341

RESUMO

All antibiotics have to engage bacterial amphiphilic barriers such as the lipopolysaccharide-rich outer membrane or the phospholipid-based inner membrane in some manner, either by disrupting them outright and/or permeating them and thereby allow the antibiotic to get into bacteria. There is a growing class of cyclic antibiotics, many of which are of bacterial origin, that exhibit activity against Gram-negative bacteria, which constitute an urgent problem in human health. We examine a diverse collection of these cyclic antibiotics, both natural and synthetic, which include bactenecin, polymyxin B, octapeptin, capreomycin, and Kirshenbaum peptoids, in order to identify what they have in common when they interact with bacterial lipid membranes. We find that they virtually all have the ability to induce negative Gaussian curvature (NGC) in bacterial membranes, the type of curvature geometrically required for permeation mechanisms such as pore formation, blebbing, and budding. This is interesting since permeation of membranes is a function usually ascribed to antimicrobial peptides (AMPs) from innate immunity. As prototypical test cases of cyclic antibiotics, we analyzed amino acid sequences of bactenecin, polymyxin B, and capreomycin using our recently developed machine-learning classifier trained on α-helical AMP sequences. Although the original classifier was not trained on cyclic antibiotics, a modified classifier approach correctly predicted that bactenecin and polymyxin B have the ability to induce NGC in membranes, while capreomycin does not. Moreover, the classifier was able to recapitulate empirical structure-activity relationships from alanine scans in polymyxin B surprisingly well. These results suggest that there exists some common ground in the sequence design of hybrid cyclic antibiotics and linear AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/química , Bactérias Gram-Negativas/patogenicidade , Humanos , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Fosfolipídeos/química , Relação Estrutura-Atividade
19.
Front Immunol ; 11: 1873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013838

RESUMO

Antimicrobial compounds first arose in prokaryotes by necessity for competitive self-defense. In this light, prokaryotes invented the first host defense peptides. Among the most well-characterized of these peptides are class II bacteriocins, ribosomally-synthesized polypeptides produced chiefly by Gram-positive bacteria. In the current study, a tensor search protocol-the BACIIα algorithm-was created to identify and classify bacteriocin sequences with high fidelity. The BACIIα algorithm integrates a consensus signature sequence, physicochemical and genomic pattern elements within a high-dimensional query tool to select for bacteriocin-like peptides. It accurately retrieved and distinguished virtually all families of known class II bacteriocins, with an 86% specificity. Further, the algorithm retrieved a large set of unforeseen, putative bacteriocin peptide sequences. A recently-developed machine-learning classifier predicted the vast majority of retrieved sequences to induce negative Gaussian curvature in target membranes, a hallmark of antimicrobial activity. Prototypic bacteriocin candidate sequences were synthesized and demonstrated potent antimicrobial efficacy in vitro against a broad spectrum of human pathogens. Therefore, the BACIIα algorithm expands the scope of prokaryotic host defense bacteriocins and enables an innovative bioinformatics discovery strategy. Understanding how prokaryotes have protected themselves against microbial threats over eons of time holds promise to discover novel anti-infective strategies to meet the challenge of modern antibiotic resistance.


Assuntos
Bacteriocinas , Biologia Computacional/métodos , Aprendizado de Máquina , Bacteriocinas/química , Bacteriocinas/classificação , Bacteriocinas/genética
20.
ACS Infect Dis ; 6(5): 1204-1213, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243126

RESUMO

Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α-ß tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4's α-helices are membrane disruptive, while XCL1's helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a ß-sheet dimer and the α-ß chemokine structure). Here, we investigate XCL1's antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular "Swiss army knife" that can refold into different structures for distinct context-dependent functions: whereas the α-ß chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the ß-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1's ß-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense.


Assuntos
Membrana Celular , Quimiocinas C/química , Proteínas Citotóxicas Formadoras de Poros/química , Candida , Dobramento de Proteína , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA