Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7996): 710-714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200317

RESUMO

Molecular ions are ubiquitous and play pivotal roles1-3 in many reactions, particularly in the context of atmospheric and interstellar chemistry4-6. However, their structures and conformational transitions7,8, particularly in the gas phase, are less explored than those of neutral molecules owing to experimental difficulties. A case in point is the halonium ions9-11, whose highly reactive nature and ring strain make them short-lived intermediates that are readily attacked even by weak nucleophiles and thus challenging to isolate or capture before they undergo further reaction. Here we show that mega-electronvolt ultrafast electron diffraction (MeV-UED)12-14, used in conjunction with resonance-enhanced multiphoton ionization, can monitor the formation of 1,3-dibromopropane (DBP) cations and their subsequent structural dynamics forming a halonium ion. We find that the DBP+ cation remains for a substantial duration of 3.6 ps in aptly named 'dark states' that are structurally indistinguishable from the DBP electronic ground state. The structural data, supported by surface-hopping simulations15 and ab initio calculations16, reveal that the cation subsequently decays to iso-DBP+, an unusual intermediate with a four-membered ring containing a loosely bound17,18 bromine atom, and eventually loses the bromine atom and forms a bromonium ion with a three-membered-ring structure19. We anticipate that the approach used here can also be applied to examine the structural dynamics of other molecular ions and thereby deepen our understanding of ion chemistry.

2.
Nature ; 582(7813): 520-524, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581378

RESUMO

Fundamental studies of chemical reactions often consider the molecular dynamics along a reaction coordinate using a calculated or suggested potential energy surface1-5. But fully mapping such dynamics experimentally, by following all nuclear motions in a time-resolved manner-that is, the motions of wavepackets-is challenging and has not yet been realized even for the simple stereotypical bimolecular reaction6-8: A-B + C â†’ A + B-C. Here we track the trajectories of these vibrational wavepackets during photoinduced bond formation of the gold trimer complex [Au(CN)2-]3 in an aqueous monomer solution, using femtosecond X-ray liquidography9-12 with X-ray free-electron lasers13,14. In the complex, which forms when three monomers A, B and C cluster together through non-covalent interactions15,16, the distance between A and B is shorter than that between B and C. Tracking the wavepacket in three-dimensional nuclear coordinates reveals that within the first 60 femtoseconds after photoexcitation, a covalent bond forms between A and B to give A-B + C. The second covalent bond, between B and C, subsequently forms within 360 femtoseconds to give a linear and covalently bonded trimer complex A-B-C. The trimer exhibits harmonic vibrations that we map and unambiguously assign to specific normal modes using only the experimental data. In principle, more intense X-rays could visualize the motion not only of highly scattering atoms such as gold but also of lighter atoms such as carbon and nitrogen, which will open the door to the direct tracking of the atomic motions involved in many chemical reactions.

3.
J Am Chem Soc ; 145(43): 23715-23726, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856865

RESUMO

[Ce(III)Cl6]3-, with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl6]3-. Structural analysis of the TRXL data revealed that the excited state of [Ce(III)Cl6]3- has Ce-Cl bonds that are shorter than those of the ground state and that the Ce-Cl bond further contracts upon oxidation. In addition, this study represents the first application of TRXL to both photocatalyst-only and photocatalyst-and-substrate samples, providing insights into the substrate's influence on the photocatalyst's reaction dynamics. This study demonstrates the capability of TRXL in elucidating the reaction dynamics of photocatalysts under various conditions and highlights the importance of experimental determination of the structures of reaction intermediates to advance our understanding of photocatalytic mechanisms.

4.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138965

RESUMO

Biological macromolecules, the fundamental building blocks of life, exhibit dynamic structures in their natural environment. Traditional structure determination techniques often oversimplify these multifarious conformational spectra by capturing only ensemble- and time-averaged molecular structures. Addressing this gap, in this work, we extend the application of the single-object scattering sampling (SOSS) method to diverse biological molecules, including RNAs and proteins. Our approach, referred to as "Bio-SOSS", leverages ultrashort X-ray pulses to capture instantaneous structures. In Bio-SOSS, we employ two gold nanoparticles (AuNPs) as labels, which provide strong contrast in the X-ray scattering signal, to ensure precise distance determinations between labeled sites. We generated hypothetical Bio-SOSS images for RNAs, proteins, and an RNA-protein complex, each labeled with two AuNPs at specified positions. Subsequently, to validate the accuracy of Bio-SOSS, we extracted distances between these nanoparticle labels from the images and compared them with the actual values used to generate the Bio-SOSS images. Specifically, for a representative RNA (1KXK), the standard deviation in distance discrepancies between molecular dynamics snapshots and Bio-SOSS retrievals was found to be optimally around 0.2 Å, typically within 1 Å under practical experimental conditions at state-of-the-art X-ray free-electron laser facilities. Furthermore, we conducted an in-depth analysis of how various experimental factors, such as AuNP size, X-ray properties, and detector geometry, influence the accuracy of Bio-SOSS. This comprehensive investigation highlights the practicality and potential of Bio-SOSS in accurately capturing the diverse conformation spectrum of biological macromolecules, paving the way for deeper insights into their dynamic natures.


Assuntos
Ouro , Nanopartículas Metálicas , Raios X , Ouro/química , Conformação Molecular , Proteínas/química , RNA
6.
J Am Chem Soc ; 143(35): 14261-14273, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34455778

RESUMO

Optical Kerr effect (OKE) spectroscopy is a method that measures the time-dependent change of the birefringence induced by an optical laser pulse using another optical laser pulse and has been used often to study the ultrafast dynamics of molecular liquids. Here we demonstrate an alternative method, femtosecond time-resolved X-ray liquidography (fs-TRXL), where the microscopic structural motions related to the OKE response can be monitored using a different type of probe, i.e., X-ray solution scattering. By applying fs-TRXL to acetonitrile and a dye solution in acetonitrile, we demonstrate that different types of molecular motions around photoaligned molecules can be resolved selectively, even without any theoretical modeling, based on the anisotropy of two-dimensional scattering patterns and extra structural information contained in the q-space scattering data. Specifically, the dynamics of reorientational (libration and orientational diffusion) and translational (interaction-induced motion) motions are captured separately by anisotropic and isotropic scattering signals, respectively. Furthermore, the two different types of reorientational motions are distinguished from each other by their own characteristic scattering patterns and time scales. The measured time-resolved scattering signals are in excellent agreement with the simulated scattering signals based on a molecular dynamics simulation for plausible molecular configurations, providing the detailed structural description of the OKE response in liquid acetonitrile.

7.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575954

RESUMO

The halogen elimination of 1,2-diiodoethane (C2H4I2) and 1,2-diiodotetrafluoroethane (C2F4I2) serves as a model reaction for investigating the influence of fluorination on reaction dynamics and solute-solvent interactions in solution-phase reactions. While the kinetics and reaction pathways of the halogen elimination reaction of C2H4I2 were reported to vary substantially depending on the solvent, the solvent effects on the photodissociation of C2F4I2 remain to be explored, as its reaction dynamics have only been studied in methanol. Here, to investigate the solvent dependence, we conducted a time-resolved X-ray liquidography (TRXL) experiment on C2F4I2 in cyclohexane. The data revealed that (ⅰ) the solvent dependence of the photoreaction of C2F4I2 is not as strong as that observed for C2H4I2, and (ⅱ) the nongeminate recombination leading to the formation of I2 is slower in cyclohexane than in methanol. We also show that the molecular structures of the relevant species determined from the structural analysis of TRXL data provide an excellent benchmark for DFT calculations, especially for investigating the relevance of exchange-correlation functionals used for the structural optimization of haloalkanes. This study demonstrates that TRXL is a powerful technique to study solvent dependence in the solution phase.


Assuntos
Cicloexanos/química , Hidrocarbonetos Halogenados/química , Soluções/química , Termodinâmica , Halogênios/química , Cinética , Metanol/química , Estrutura Molecular , Radiografia , Solventes/química , Difração de Raios X
8.
Nat Chem ; 16(5): 693-699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528103

RESUMO

Crystalline systems consisting of small-molecule building blocks have emerged as promising materials with diverse applications. It is of great importance to characterize not only their static structures but also the conversion of their structures in response to external stimuli. Femtosecond time-resolved crystallography has the potential to probe the real-time dynamics of structural transitions, but, thus far, this has not been realized for chemical reactions in non-biological crystals. In this study, we applied time-resolved serial femtosecond crystallography (TR-SFX), a powerful technique for visualizing protein structural dynamics, to a metal-organic framework, consisting of Fe porphyrins and hexazirconium nodes, and elucidated its structural dynamics. The time-resolved electron density maps derived from the TR-SFX data unveil trifurcating structural pathways: coherent oscillatory movements of Zr and Fe atoms, a transient structure with the Fe porphyrins and Zr6 nodes undergoing doming and disordering movements, respectively, and a vibrationally hot structure with isotropic structural disorder. These findings demonstrate the feasibility of using TR-SFX to study chemical systems.

9.
Nat Commun ; 13(1): 522, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082327

RESUMO

Energy, structure, and charge are fundamental quantities characterizing a molecule. Whereas the energy flow and structure change in chemical reactions are experimentally characterized, determining the atomic charges of a molecule in solution has been elusive, even for a triatomic molecule such as triiodide ion, I3-. Moreover, it remains to be answered how the charge distribution is coupled to the molecular geometry; which I-I bond, if two I-I bonds are unequal, dissociates depending on the electronic state. Here, femtosecond anisotropic x-ray solution scattering allows us to provide the following answers in addition to the overall rich structural dynamics. The analysis unravels that the negative charge of I3- is highly localized on the terminal iodine atom forming the longer bond with the central iodine atom, and the shorter I-I bond dissociates in the excited state, whereas the longer one in the ground state. We anticipate that this work may open a new avenue for studying the atomic charge distribution of molecules in solution and taking advantage of orientational information in anisotropic scattering data for solution-phase structural dynamics.

10.
Nat Commun ; 12(1): 4732, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354075

RESUMO

Roaming reaction, defined as a reaction yielding products via reorientational motion in the long-range region (3 - 8 Å) of the potential, is a relatively recently proposed reaction pathway and is now regarded as a universal mechanism that can explain the unimolecular dissociation and isomerization of various molecules. The structural movements of the partially dissociated fragments originating from the frustrated bond fission at the onset of roaming, however, have been explored mostly via theoretical simulations and rarely observed experimentally. Here, we report an investigation of the structural dynamics during a roaming-mediated isomerization reaction of bismuth triiodide (BiI3) in acetonitrile solution using femtosecond time-resolved x-ray liquidography. Structural analysis of the data visualizes the atomic movements during the roaming-mediated isomerization process including the opening of the Bi-Ib-Ic angle and the closing of Ia-Bi-Ib-Ic dihedral angle, each by ~40°, as well as the shortening of the Ib···Ic distance, following the frustrated bond fission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA