Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nucleic Acids Res ; 52(2): 885-905, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000373

RESUMO

RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.


Assuntos
Drosophila , Proteínas de Ligação a RNA , Animais , Humanos , Regiões 5' não Traduzidas , Drosophila/genética , Drosophila/metabolismo , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 51(5): 2415-2433, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36794732

RESUMO

Topoisomerases are required to release topological stress generated by RNA polymerase II (RNAPII) during transcription. Here, we show that in response to starvation, the complex of topoisomerase 3b (TOP3B) and TDRD3 can enhance not only transcriptional activation, but also repression, which mimics other topoisomerases that can also alter transcription in both directions. The genes enhanced by TOP3B-TDRD3 are enriched with long and highly-expressed ones, which are also preferentially stimulated by other topoisomerases, suggesting that different topoisomerases may recognize their targets through a similar mechanism. Specifically, human HCT116 cells individually inactivated for TOP3B, TDRD3 or TOP3B topoisomerase activity, exhibit similarly disrupted transcription for both starvation-activated genes (SAGs) and starvation-repressed genes (SRGs). Responding to starvation, both TOP3B-TDRD3 and the elongating form of RNAPII exhibit concomitantly increased binding to TOP3B-dependent SAGs, at binding sites that overlap. Notably, TOP3B inactivation decreases the binding of elongating RNAPII to TOP3B-dependent SAGs while increased it to SRGs. Furthermore, TOP3B-ablated cells display reduced transcription of several autophagy-associated genes and autophagy per se. Our data suggest that TOP3B-TDRD3 can promote both transcriptional activation and repression by regulating RNAPII distribution. In addition, the findings that it can facilitate autophagy may account for the shortened lifespan of Top3b-KO mice.


Assuntos
DNA Topoisomerases , Ativação Transcricional , Animais , Humanos , Camundongos , Proteínas/metabolismo , RNA Polimerase II/metabolismo , Linhagem Celular , Fenômenos Fisiológicos Celulares , DNA Topoisomerases/metabolismo , Autofagia
3.
Nucleic Acids Res ; 50(12): 7013-7033, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748872

RESUMO

Topoisomerase 3ß (TOP3B) and TDRD3 form a dual-activity topoisomerase complex that interacts with FMRP and can change the topology of both DNA and RNA. Here, we investigated the post-transcriptional influence of TOP3B and associated proteins on mRNA translation and turnover. First, we discovered that in human HCT116 colon cancer cells, knock-out (KO) of TOP3B had similar effects on mRNA turnover and translation as did TDRD3-KO, while FMRP-KO resulted in rather distinct effects, indicating that TOP3B had stronger coordination with TDRD3 than FMRP in mRNA regulation. Second, we identified TOP3B-bound mRNAs in HCT116 cells; we found that while TOP3B did not directly influence the stability or translation of most TOP3B target mRNAs, it stabilized a subset of target mRNAs but had a more complex effect on translation-enhancing for some mRNAs whereas reducing for others. Interestingly, a point mutation that specifically disrupted TOP3B catalytic activity only partially recapitulated the effects of TOP3B-KO on mRNA stability and translation, suggesting that the impact of TOP3B on target mRNAs is partly linked to its ability to change topology of mRNAs. Collectively, our data suggest that TOP3B-TDRD3 can regulate mRNA translation and turnover by mechanisms that are dependent and independent of topoisomerase activity.


Assuntos
Biossíntese de Proteínas , Proteínas , Humanos , RNA Mensageiro/genética
4.
BMC Musculoskelet Disord ; 23(1): 1052, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461004

RESUMO

BACKGROUND: Percutaneous epiphysiodesis using a transphyseal screw (PETS) or tension-band plating (TBP) has shown favourable correction results; however, the physeal behaviours in terms of rebound, stable correction, or overcorrection after guided growth have not been completely understood. In patients with idiopathic genu valgum, we therefore asked: (1) How is the correction maintained after implant removal of guided growth? (2) Is there any difference in the natural behaviours after PETS or TBP removal at the femur and tibia? METHODS: We retrospectively reviewed 73 skeletally immature limbs with idiopathic genu valgum treated with PETS or TBP. PETS was performed in 23 distal femurs and 13 proximal tibias, and TBP was performed in 27 distal femurs and ten proximal tibias. Mechanical axis deviation (MAD), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle were measured at pre-correction, implant removal, and final follow-up. Changes of ≤ 3° in mechanical angles after implant removal were considered stable. Comparisons between the implant, anatomical site, and existence of rebound were performed. RESULTS: The mean MAD improved from - 18.8 mm to 11.3 mm at implant removal and decreased to -0.2 mm at the final follow-up. At the final follow-up, 39 limbs (53.4%) remained stable and only 12 (16.4%) were overcorrected. However, 22 limbs (30.1%) showed rebound. TBP was more common, and the correction period was longer in the rebound group (p < 0.001 and 0.013, respectively). In femurs treated with PETS, the mean mLDFA increased from 86.9° at implant removal to 88.4° at the final follow-up (p = 0.031), demonstrating overcorrection. However, a significant rebound from 89.7° to 87.1° was noted at the femur in the TBP group (p < 0.001). The correction of the proximal tibia did not change after implant removal. CONCLUSION: The rebound was more common than overcorrection after guided growth; however, approximately half the cases demonstrated stable correction. The overcorrection occurred after PETS in the distal femur, while cases with TBP had a higher probability of rebound. The proximal tibia was stable after implant removal. The subsequent physeal behaviours after each implant removal should be considered in the guided growth.


Assuntos
Geno Valgo , Humanos , Estudos Retrospectivos , Placas Ósseas , Parafusos Ósseos , Extremidade Inferior
5.
Appl Microbiol Biotechnol ; 102(5): 2155-2165, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29372299

RESUMO

Avermectin produced by Streptomyces avermitilis is an anti-nematodal agent against the pine wood nematode Bursaphelenchus xylophilus. However, its potential usage is limited by its poor water solubility. For this reason, continuous efforts are underway to produce new derivatives that are more water soluble. Here, the enzymatic glycosylation of avermectin was catalyzed by uridine diphosphate (UDP)-glycosyltransferase from Bacillus licheniformis with various UDP sugars. As a result, the following four avermectin B1a glycosides were produced: avermectin B1a 4″-ß-D-glucoside, avermectin B1a 4″-ß-D-galactoside, avermectin B1a 4″-ß-L-fucoside, and avermectin B1a 4″-ß-2-deoxy-D-glucoside. The avermectin B1a glycosides were structurally analyzed based on HR-ESI MS and 1D and 2D nuclear magnetic resonance spectra, and the anti-nematodal effect of avermectin B1a 4″-ß-D-glucoside was found to exhibit the highest activity (IC50 = 0.23 µM), which was approximately 32 times greater than that of avermectin B1a (IC50 = 7.30 µM), followed by avermectin B1a 4″-ß-2-deoxy-D-glucoside (IC50 = 0.69 µM), avermectin B1a 4″-ß-L-fucoside (IC50 = 0.89 µM), and avermectin B1a 4″-ß-D-galactoside (IC50 = 1.07 µM). These results show that glycosylation of avermectin B1a effectively enhances its in vitro anti-nematodal activity and that avermectin glycosides can be further applied for treating infestations of the pine wood nematode B. xylophilus.


Assuntos
Anti-Helmínticos/farmacologia , Bacillus licheniformis/enzimologia , Proteínas de Bactérias/metabolismo , Glicosídeos/farmacologia , Glicosiltransferases/metabolismo , Ivermectina/análogos & derivados , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Bacillus licheniformis/metabolismo , Proteínas de Bactérias/química , Glicosídeos/química , Glicosídeos/metabolismo , Glicosiltransferases/química , Ivermectina/química , Ivermectina/metabolismo , Ivermectina/farmacologia , Doenças das Plantas/prevenção & controle , Tylenchida/fisiologia
6.
Nucleic Acids Res ; 44(13): 6335-49, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27257063

RESUMO

DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved Type IA core domains and the same catalytic residue used in DNA topoisomerase reaction; however, it does not absolutely require the non-conserved carboxyl-terminal domain (CTD), which is necessary for relaxation reactions of supercoiled DNA. The RNA topoisomerase activity of human Top3ß differs from that of Escherichia coli topoisomerase I in that the former but not the latter requires the CTD, indicating that topoisomerases have developed distinct mechanisms during evolution to catalyze RNA topoisomerase reactions. Notably, Top3ß proteins from several animals associate with polyribosomes, which are units of mRNA translation, whereas the Top3 homologs from E. coli and yeast lack the association. The Top3ß-polyribosome association requires TDRD3, which directly interacts with Top3ß and is present in animals but not bacteria or yeast. We propose that RNA topoisomerases arose in the early RNA world, and that they are retained through all domains of DNA-based life, where they mediate mRNA translation as part of polyribosomes in animals.


Assuntos
DNA Topoisomerases Tipo I/genética , Evolução Molecular , Polirribossomos/genética , Proteínas/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , DNA Super-Helicoidal/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , RNA/genética , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
7.
Angew Chem Int Ed Engl ; 55(21): 6305-9, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27073133

RESUMO

Di-peri-dinaphthoporphyrins can be regarded as a key and common substructure of fused porphyrinoids. PtCl2 -mediated cycloisomerization reaction of quinodimethane-type porphyrins provided these doubly fused porphyrins, which exhibit characteristic paratropic ring currents that presumably arise from 24π antiaromatic circuit as a dominant resonance contributor. UV/Vis absorption spectra, cyclic voltammetry, and excited-state dynamics as well as theoretical calculation support this conclusion.

8.
Chemistry ; 21(43): 15328-38, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26338286

RESUMO

Azobenzene-bridged ß-to-ß and meso-to-meso porphyrin nanorings were successfully synthesized by a palladium-catalyzed Suzuki-Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di- and tetramers are in the all-trans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the all-trans configurations: the pure all-trans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump-power-dependent decay results revealed excitation energy transfer for azobenzene-bridged zinc-porphyrin nanorings. The distances between porphyrin units of these azobenzene-bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso-to-meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)-porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di- and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.

9.
Heliyon ; 10(9): e30563, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742076

RESUMO

Farmers cultivate plants in the winter using water curtain cultivation (WCC) facilities by spraying groundwater to keep them warm. In this study, the WCC facilities exhibited high radon concentrations during winter. The risk varied significantly depending on the facility operation, peaking in the early morning and then decreasing upon ventilation. At all measurement sites, radon concentrations were low when groundwater was not used. Even during the period of facility groundwater use, if water vapor condensation does not occur, there is no significant difference from soil-only emissions. However, once water vapor condensation occurs, radon accumulates rapidly, depending on the degree of radon contamination in the groundwater. Because groundwater contamination varies according to dilution by regional rainfall or inflow from other regions due to groundwater movement, abnormal changes in radon content occur. We found that in the absence of water vapor condensation in the facility, all the radon emitted from the soil and groundwater quickly escaped to the atmosphere, resulting in significantly lower indoor radon concentrations. These findings pave the way for the development of new methods to mitigate radon in WCC facilities.

10.
Prog Neurobiol ; 233: 102568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216113

RESUMO

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.


Assuntos
Disfunção Cognitiva , Regulação da Expressão Gênica , Animais , Humanos , Camundongos , Sequência de Aminoácidos , Neurogênese/genética , Plasticidade Neuronal/genética , Proteínas/genética , Proteínas/metabolismo
11.
J Cell Sci ; 124(Pt 17): 2914-26, 2011 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-21878499

RESUMO

The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical ß(Heavy)-spectrin (ß(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of ß(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral ß(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when ß(H)-positive endosomes are generated either by upregulation of ß(H) in pak mutants or through the expression of the dominant-negative version of ß(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or ß(H). Loss of AnxB9 or ß(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes ß(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to ß(H). These results indicate that AnxB9 and ß(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.


Assuntos
Anexinas/metabolismo , Proteínas de Drosophila/metabolismo , Espectrina/metabolismo , Animais , Anexinas/deficiência , Anexinas/genética , Caderinas/metabolismo , Drosophila , Proteínas de Drosophila/genética , Endossomos/genética , Endossomos/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Membranas/metabolismo , Corpos Multivesiculares , Transdução de Sinais , Espectrina/genética , Ubiquitinas/metabolismo
12.
Res Sq ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909584

RESUMO

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex in animals that can alter the topology of both DNA and RNA. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impairments in cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal shorten-memory and learning, and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we built a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive impairment and psychiatric disorders.

13.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 784-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751663

RESUMO

Peptide deformylase (PDF) catalyzes the removal of the formyl group from the N-terminal methionine residue in newly synthesized polypeptides, which is an essential process in bacteria. Four new inhibitors of PDF that belong to two different classes, hydroxamate/pseudopeptide compounds [PMT387 (7a) and PMT497] and reverse-hydroxamate/nonpeptide compounds [PMT1039 (15e) and PMT1067], have been developed. These compounds inhibited the growth of several pathogens involved in respiratory-tract infections, such as Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae, and leading nosocomial pathogens such as Staphylococcus aureus and Klebsiella pneumoniae with a minimum inhibitory concentration (MIC) in the range 0.1-0.8 mg ml(-1). Interestingly, the reverse-hydroxamate/nonpeptide compounds showed a 250-fold higher antimicrobial activity towards S. aureus, although the four compounds showed similar K(i) values against S. aureus PDF enzymes, with K(i) values in the 11-85 nM range. To provide a structural basis for the discovery of additional PDF inhibitors, the crystal structures of S. aureus PDF in complex with the four inhibitors were determined at resolutions of 1.90-2.30 Å. The inhibitor-bound structures displayed distinct deviations depending on the inhibitor class. The distance between the Zn(2+) ion and the carbonyl O atom of the hydroxamate inhibitors (or the hydroxyl O atom of the reverse-hydroxamate inhibitors) appears to be correlated to S. aureus inhibition activity. The structural information reported in this study should aid in the discovery of new PDF inhibitors that can be used as novel antibacterial drugs.


Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Amidoidrolases/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Modelos Moleculares , Moraxella catarrhalis/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos da radiação , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química
14.
J Phys Chem Lett ; 13(24): 5553-5556, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35696266

RESUMO

The solar conversion of CO2 to low carbon fuels has been heralded as a potential solution to combat the rise in greenhouse gas emissions. Here we report the first light-driven activation of [NiFe] CODH II from Carboxydothermus hydrogenoformans for the reduction of CO2 to CO. To accomplish this, a hybrid photosystem composed of CODH II and CdSe/CdS dot-in-rod nanocrystals was developed. By incorporating a low-potential redox mediator to assist electron transfer, quantum yields up to 19% and turnover frequencies of 9 s-1 were achieved. These results represent a new standard in efficient CO2 reduction by an enzyme-based photocatalytic systems. Furthermore, successful photoactivation of CODH II allows for future exploration into the enzyme's not fully understood mechanism.


Assuntos
Compostos de Cádmio , Nanotubos , Compostos de Selênio , Aldeído Oxirredutases , Dióxido de Carbono , Monóxido de Carbono/química , Complexos Multienzimáticos
15.
Brain Sci ; 12(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35884716

RESUMO

Successful spinal surgery demands high levels of concentration and cooperation from participating health care workers. The intraoperative stress levels and concentration levels of surgeons have been studied previously; however, those of nurses are rarely studied. Therefore, the purpose of this study is to understand the stresses affecting surgical nurses by their participating role during spinal surgery. A total of 160 surgical stress records were obtained during 40 surgeries, including electroencephalography (EEG) signals and heart rate variability (HRV) from three orthopedic spinal surgeons and six nurses; concentration, tension level and physical stress were analyzed. Levels of both concentration and tension were significantly higher in circulating nurses during all surgical stages (p < 0.05). Both beats per minute and low frequency/high frequency ratios, which reflect physical stress, were higher in scrub nurses (p < 0.05). As the surgical experience of scrub nurses increased, the key parameters related to stress tended to decrease (p < 0.01). These results will contribute to understanding the pattern of intraoperative stress of surgical nurses, and therefore help in enhancing the teamwork of the surgical team for optimal outcomes.

17.
Diagnostics (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34574023

RESUMO

Concomitant talocalcaneal coalition (TCC) in idiopathic clubfeet is not well documented in the literature. The purpose of this study was to describe our experience with very early relapsing idiopathic clubfeet associated with TCC. Although cases have been successfully treated with the Ponseti casting method, all recurred within 2 months of removing the final cast. A single-centre cohort of twelve feet in eight patients treated by a single surgeon between 2006 and 2020 was investigated retrospectively. Recurred cavus with variable degrees of equinus was the earliest findings noted. TCC was incidentally detected during the open reduction of the earliest three feet in our series. Afterwards, ultrasonography was advised as a screening tool for detecting an associated anomaly; however, only the use of magnetic resonance imaging (MRI) was 100% accurate in diagnosing concurrent TCC. All coalitions were cartilaginous and the posterior facet was most commonly involved facet. The average age was 18 months for the coalition resection and open reduction of a dislocated talonavicular joint, and the average duration of follow-up was 52 months. None of the patients showed clinical signs of relapse at the latest follow-up. We recommend that an associated TCC should be considered in very early relapsing idiopathic clubfoot cases.

18.
J Clin Med ; 10(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34575383

RESUMO

The posterior tibial slope of the tibiofemoral joint changes after medial open wedge high tibial osteotomy (MOWHTO), but little is known about the effect of the sagittal osteotomy inclination angle on the change in the posterior tibial slope of the tibiofemoral joint. The purpose of this study was to investigate the effect of the osteotomy inclination angle in the sagittal plane on changes in the posterior tibial slope after MOWHTO by comparing how anterior and posterior inclination affect the posterior tibial slope of the tibiofemoral joint. The correlation between the osteotomy inclination angle and the postoperative posterior tibial slope angle was also assessed. Between May 2011 and November 2017, 80 patients with medial compartment osteoarthritis who underwent MOWHTO were included. The patients were divided into two groups according to the sagittal osteotomy inclination angle on the 3D reconstructed model. Patients with an osteotomy line inclined anteriorly to the medial tibial plateau line were classified into group A (58 patients). Patients with posteriorly inclined osteotomy line were classified as group P (22 patients). In the 3D reconstructed model, the preoperative and postoperative posterior tibial slope, osteotomy inclination angle relative to medial tibial plateau line in sagittal plane, and gap distance and ratio of the anterior and posterior osteotomy openings were measured. The preoperative and postoperative hip-knee-ankle angle, weight-bearing line ratio, and posterior tibial slope were also measured using plain radiographs. In the 3D reconstructed model, the postoperative posterior tibial slope significantly increased in group A (preoperative value = 9.7 ± 2.9°, postoperative value = 10.7 ± 3.0°, p < 0.001) and decreased in group P (preoperative value = 8.7 ± 2.7°, postoperative value = 7.7 ± 2.7°, p < 0.001). The postoperative posterior tibial slope (group A = 10.7 ± 3.0°, group P = 7.7 ± 2.7°, p < 0.001) and posterior tibial slope change before and after surgery (group A = 1.0 ± 0.8°, group P = -0.9 ± 0.8°, p < 0.001) also differed significantly between the groups. The Pearson correlation coefficient was 0.875 (p < 0.001) for the osteotomy inclination angle, and multivariate regression analysis showed that the only significant factor among the variables was the sagittal osteotomy inclination angle (ß coefficient = 0.216, p < 0.001). The posterior tibial slope changed according to the osteotomy inclination angle in the sagittal plane after MOWHTO. The postoperative posterior tibial slope tended to increase when the osteotomy line was inclined anteriorly with respect to the medial tibial plateau line but decreased when the osteotomy line was inclined posteriorly. To avoid inadvertent change of posterior tibial slope, close attention needs to be paid to maintaining the sagittal osteotomy line parallel to the medial joint line during MOWHTO.

19.
Protein Expr Purif ; 70(2): 224-30, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19825416

RESUMO

Human peptide deformylase (hPDF), located in the mitochondria, has recently become a promising target for anti-cancer therapy. However, the expression of the hPDF gene in Escherichia coli is not efficient likely due to extremely high levels of GC content as well as the presence of rare codons. We performed codon optimization of the hPDF gene in order to reduce GC content and to eliminate rare codons. Putative stable secondary structures of the optimized gene were also reduced. Codon optimization increased the expression of hPDF protein (residues 63-243) presumably by reducing the GC content. A large amount of soluble hPDF was obtained upon its fusion with thioredoxin (Trx-hPDF), although an insoluble fraction was still dominant. We confirmed that Co(2+) is an optimal metal for increasing the activity of purified Trx-hPDF, and that actinonin acts as an efficient inhibitor. Therefore, a large amount of purified hPDF protein would provide many benefits for the screening of various drug candidates.


Assuntos
Amidoidrolases/biossíntese , Códon/genética , Proteínas Recombinantes de Fusão/biossíntese , Amidoidrolases/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Dados de Sequência Molecular
20.
Bioorg Med Chem Lett ; 20(15): 4317-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20615695

RESUMO

Peptide deformylase (PDF) is a metalloprotease catalyzing the removal of a formyl group from newly synthesized proteins. Thus inhibition of PDF activity is considered to be one of the most effective antibiotic strategies. Reported herein are the synthesis and structure-activity relationship studies of retro-amide inhibitors based on actinonin, a naturally occurring PDF inhibitor. Analysis of the structure-activity relationships led to the discovery of 7a, which exhibits potent enzyme inhibition and antibacterial activity against Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis.


Assuntos
Amidas/química , Amidoidrolases/antagonistas & inibidores , Antibacterianos/síntese química , Ciclopentanos/síntese química , Inibidores Enzimáticos/síntese química , Amidas/síntese química , Amidas/farmacologia , Amidoidrolases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Ciclopentanos/química , Ciclopentanos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA