Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 80(4): 592-606.e8, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33159855

RESUMO

Despite its outstanding clinical success, immune checkpoint blockade remains ineffective in many patients. Accordingly, combination therapy capable of achieving greater antitumor immunity is urgently required. Here, we report that limiting glutamine metabolism in cancer cells bolsters the effectiveness of anti-programmed death ligand-1 (PD-L1) antibody. Inhibition of glutamine utilization increased PD-L1 levels in cancer cells, thereby inactivating co-cultured T cells. Under glutamine-limited conditions, reduced cellular GSH levels caused an upregulation of PD-L1 expression by impairing SERCA activity, which activates the calcium/NF-κB signaling cascade. Consequently, in tumors grown in immunocompetent mice, inhibition of glutamine metabolism decreased the antitumor activity of T cells. In combination with anti-PD-L1, however, glutamine depletion strongly promoted the antitumor efficacy of T cells in vitro and in vivo due to simultaneous increases in Fas/CD95 levels. Our results demonstrate the relevance of cancer glutamine metabolism to antitumor immunity and suggest that co-targeting of glutamine metabolism and PD-L1 represents a promising therapeutic approach.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Neoplasias/imunologia , Neoplasias/prevenção & controle , Linfócitos T/imunologia , Idoso , Animais , Apoptose , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Biophys Res Commun ; 560: 45-51, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33965788

RESUMO

Rapidly proliferating cells such as vascular smooth muscle cells (VSMCs) require metabolic programs to support increased energy and biomass production. Thus, targeting glutamine metabolism by inhibiting glutamine transport could be a promising strategy for vascular disorders such as atherosclerosis, stenosis, and restenosis. V-9302, a competitive antagonist targeting the glutamine transporter, has been investigated in the context of cancer; however, its role in VSMCs is unclear. Here, we examined the effects of blocking glutamine transport in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using V-9302. We found that V-9302 inhibited mTORC1 activity and mitochondrial respiration, thereby suppressing FBS- or PDGF-stimulated proliferation and migration of VSMCs. Moreover, V-9302 attenuated carotid artery ligation-induced neointima in mice. Collectively, the data suggest that targeting glutamine transport using V-9302 is a promising therapeutic strategy to ameliorate occlusive vascular disease.


Assuntos
Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Neointima/tratamento farmacológico , Sistema A de Transporte de Aminoácidos/antagonistas & inibidores , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Artérias Carótidas/cirurgia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Ligadura , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/etiologia , Neointima/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacologia
3.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070527

RESUMO

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diazo-Oxo-Norleucina/farmacologia , Glutamina/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Neointima/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Diazo-Oxo-Norleucina/análogos & derivados , Glutamina/metabolismo , Imuno-Histoquímica , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/farmacologia
4.
BMB Rep ; 55(9): 459-464, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35651333

RESUMO

Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer. [BMB Reports 2022; 55(9): 459-464].


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melatonina , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Glicólise , Humanos , Neoplasias Hepáticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Respiração
5.
J Exp Clin Cancer Res ; 41(1): 98, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287706

RESUMO

BACKGROUND: Macropinocytosis, an important nutrient-scavenging pathway in certain cancer cells, allows cells to compensate for intracellular amino acid deficiency under nutrient-poor conditions. Ferroptosis caused by cysteine depletion plays a pivotal role in sorafenib responses during hepatocellular carcinoma (HCC) therapy. However, it is not known whether macropinocytosis functions as an alternative pathway to acquire cysteine in sorafenib-treated HCC, and whether it subsequently mitigates sorafenib-induced ferroptosis. This study aimed to investigate whether sorafenib drives macropinocytosis induction, and how macropinocytosis confers ferroptosis resistance on HCC cells. METHODS: Macropinocytosis, both in HCC cells and HCC tissues, was evaluated by measuring TMR-dextran uptake or lysosomal degradation of DQ-BSA, and ferroptosis was evaluated via C11-BODIPY fluorescence and 4-HNE staining. Sorafenib-induced ferroptosis and macropinocytosis were validated in tumor tissues taken from HCC patients who underwent ultrasound-guided needle biopsy. RESULTS: Sorafenib increased macropinocytosis in human HCC specimens and xenografted HCC tissues. Sorafenib-induced mitochondrial dysfunction was responsible for activation of PI3K-RAC1-PAK1 signaling, and amplified macropinocytosis in HCC. Importantly, macropinocytosis prevented sorafenib-induced ferroptosis by replenishing intracellular cysteine that was depleted by sorafenib treatment; this rendered HCC cells resistant to sorafenib. Finally, inhibition of macropinocytosis by amiloride markedly enhanced the anti-tumor effect of sorafenib, and sensitized resistant tumors to sorafenib. CONCLUSION: In summary, sorafenib induced macropinocytosis, which conferred drug resistance by mitigating sorafenib-induced ferroptosis. Thus, targeting macropinocytosis is a promising therapeutic strategy to facilitate ferroptosis-based therapy for HCC.


Assuntos
Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/tratamento farmacológico , Cisteína/uso terapêutico , Ferroptose/efeitos dos fármacos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/tratamento farmacológico , Pinocitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Carcinoma Hepatocelular/patologia , Cisteína/farmacologia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia
6.
BMB Rep ; 55(11): 547-552, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36016501

RESUMO

Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, induces ferroptosis in hepatocellular carcinoma (HCC) cells. Several pathways that mitigate sorafenib-induced ferroptosis confer drug resistance; thus strategies that enhance ferroptosis increase sorafenib efficacy. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated in human HCC tissues and plays a role in cancer cell proliferation. The aim of this study was to determine whether inhibition of ERRγ with DN200434, an orally available inverse agonist, can overcome resistance to sorafenib through induction of ferroptosis. Sorafenib-resistant HCC cells were less sensitive to sorafenibinduced ferroptosis and showed significantly higher ERRγ levels than sorafenib-sensitive HCC cells. DN200434 induced lipid peroxidation and ferroptosis in sorafenib-resistant HCC cells. Mechanistically, DN200434 increased mitochondrial ROS generation by reducing glutathione/glutathione disulfide levels, which subsequently reduced mTOR activity and GPX4 levels. DN200434 induced amplification of the antitumor effects of sorafenib was confirmed in a tumor xenograft model. The present results indicate that DN200434 may be a novel therapeutic strategy to re-sensitize HCC cells to sorafenib. [BMB Reports 2022; 55(11): 547-552].


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/metabolismo , Estrogênios , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
7.
Exp Ther Med ; 19(6): 3454-3460, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32373191

RESUMO

Excessive vascular smooth muscle cell (VSMC) proliferation contributes to the development of atherosclerosis and restenosis. Furthermore, apoptosis of VSMCs accelerates plaque rupture in the atherosclerotic vessels. Therefore, a strategy that regulates both VSMC proliferation and apoptosis is essential for the development of novel pharmacological tools for the treatment of atherosclerosis. Despite mounting evidence supporting the benefits of melatonin in diverse metabolic diseases, the role of melatonin in VSMC growth remains largely unknown. The present study revealed that melatonin inhibited both proliferation and apoptosis of primary cultured rat VSMCs. Melatonin induced mitochondrial energetic stress in VSMCs and subsequent induction of Sestrin2 via C/EBPß. Melatonin-induced Sestrin2 suppressed mTORC1 activity in VSMCs, contributing to suppression of VSMC proliferation. Additionally, melatonin-induced upregulation of Sestrin2 blocked apoptosis by preventing excessive ROS generation. The results demonstrated that melatonin controlled VSMC proliferation and apoptosis via Sestrin2-mediated inhibition of mTORC1 and ROS scavenging. Therefore, melatonin should be considered as a lead compound for therapies aimed at preventing vessel lumen constriction during the course of atherosclerosis and restenosis.

8.
Diabetes Metab J ; 44(1): 186-192, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701692

RESUMO

Renal fibrosis is considered to be the final common outcome of chronic kidney disease. Dipeptidyl peptidase-4 (DPP-4) inhibitors have demonstrated protective effects against diabetic kidney disease. However, the anti-fibrotic effect of evogliptin, a DPP-4 inhibitor, has not been studied. Here, we report the beneficial effects of evogliptin on unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Evogliptin attenuated UUO-induced renal atrophy and tubulointerstitial fibrosis. Immunohistochemistry and Western blotting demonstrated that evogliptin treatment inhibits pro-fibrotic gene expressions and extracellular matrix production. In vitro findings showed that the beneficial effects of evogliptin on renal fibrosis are mediated by inhibition of the transforming growth factor-ß/Smad3 signaling pathway. The present study demonstrates that evogliptin is protective against UUO-induced renal fibrosis, suggesting that its clinical applications could extend to the treatment of kidney disease of non-diabetic origin.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Nefropatias/tratamento farmacológico , Túbulos Renais Proximais/patologia , Piperazinas/farmacologia , Substâncias Protetoras/farmacologia , Obstrução Ureteral/complicações , Animais , Fibrose , Inflamação/metabolismo , Nefropatias/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/metabolismo
9.
Diabetes Metab J ; 43(6): 830-839, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30877711

RESUMO

BACKGROUND: The hypoglycemic drugs dipeptidyl peptidase-4 (DPP-4) inhibitors have proven protective effects on diabetic kidney disease, including renal fibrosis. Although NOD-like receptor protein 3 (NLRP3) inflammasome activation is known to play an important role in the progression of renal fibrosis, the impact of DPP-4 inhibition on NLRP3-mediated inflammation while ameliorating renal fibrosis has not been fully elucidated. Here, we report that the renoprotective effect of gemigliptin is associated with a reduction in NLRP3-mediated inflammation in a murine model of renal fibrosis. METHODS: We examined the effects of gemigliptin on renal tubulointerstitial fibrosis induced in mice by unilateral ureteral obstruction (UUO). Using immunohistochemical and Western blot analysis, we quantitated components of the NLRP3 inflammasome in kidneys with and without gemigliptin treatment, and in vitro in human kidney tubular epithelial human renal proximal tubule cells (HK-2) cells, we further analyzed the effect of gemigliptin on transforming growth factor-ß (TGF-ß)-stimulated production of profibrotic proteins. RESULTS: Immunohistological examination revealed that gemigliptin ameliorated UUO-induced tubular atrophy and renal fibrosis. Gemigliptin-treated kidneys showed a reduction in levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1ß, which had all been markedly increased by UUO. In line with the in vivo results, TGF-ß markedly increased NLRP3 inflammasome markers, which were attenuated by gemigliptin treatment. Furthermore, gemigliptin treatment attenuated phosphorylated nuclear factor-κB levels, which had been increased in the UUO kidney as well as in TGF-ß-treated cultured renal cells. CONCLUSION: The present study shows that activation of the NLRP3 inflammasome contributes to UUO-induced renal fibrosis and the renoprotective effect of gemigliptin is associated with attenuation of NLRP3 inflammasome activation.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Regulação para Baixo/efeitos dos fármacos , Inflamassomos/metabolismo , Túbulos Renais Proximais/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piperidonas/farmacologia , Substâncias Protetoras/farmacologia , Pirimidinas/farmacologia , Administração Oral , Animais , Linhagem Celular , Nefropatias Diabéticas/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Fibrose , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piperidonas/administração & dosagem , Piperidonas/uso terapêutico , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/uso terapêutico , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA