Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(40): e2402528, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38845027

RESUMO

The crystal structure and phase stability of a host lattice plays an important role in efficient upconversion phenomena. In stable hosts, lanthanides doping should not generally change the crystal structure of the host itself. But when phase of a system drastically changes after lanthanide doping resulting in multiple phases, accurate identification of upconverting phase remains a challenge. Herein, an attempt to synthesize lanthanide-doped NiMoO4 by microwave hydrothermal method produced MoO3/Yb2Mo4O15/NiMoO4 micro-nano composite upconversion phosphor. A combined approach of density functional theory (DFT) calculations and single-particle-level upconversion imaging has been employed to elucidate the phase stability of different phases and upconversion properties within the composite. Through single-particle-level imaging under 980 nm excitation, an unprecedented resolution in visualizing individual emitting and non-emitting regions within the composite has been achieved, thereby allowing to accurately assign the Yb2Mo4O15 as a sole upconversion emitting phase in the composite. Result of the DFT calculation further shows that the Yb2Mo4O15 phase is the most thermodynamically preferred over other lanthanide-doped phases in the composite. This comprehensive understanding not only advances the knowledge of upconversion emission from composite materials but also holds promise for tailoring optical properties of materials for various applications, including bioimaging, sensing, and photonics, where controlled light emission is crucial.

2.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500445

RESUMO

The quantum confinement effect and interesting optical properties of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite quantum dots (QDs) and nanocrystals (NCs) have given a new horizon to lighting and photonic applications. Given the exponential rate at which scientific results on CsPbX3NCs are published in the last few years, it can be expected that the research in CsPbX3NCs will further receive increasing scientific interests in the near future and possibly lead to great commercial opportunities to realize these materials based practical applications. With the rapid progress in the single-photon emitting CsPbX3QDs and NCs, practical applications of the quantum technologies such as single-photon emitting light-emitting diode, quantum lasers, quantum computing might soon be possible. But to reach at cutting edge of stable perovskite QDs/NCs, the study of fundamental insight and theoretical aspects of crystal design is yet insufficient. Even more, it has aroused many unanswered questions related to the stability, optical and electronic properties of the CsPbX3QDs. Aim of the present review is to illustrate didactically a precise study of recent progress in the synthesis, properties and applications of CsPbX3QDs and NCs. Critical issues that currently restrict the applicability of these QDs will be identified and advanced methodologies currently in the developing queue, to overcome the roadblock, will be presented. And finally, the prospects for future directions will be provided.

3.
Nanotechnology ; 31(10): 104001, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31751971

RESUMO

Two different ceramic carbide nanoparticles (SiC, and TiC) were separately incorporated into the Ni-P matrix via the electroless deposition method. As prepared Ni-P, Ni-P-SiC, and Ni-P-TiC coatings were subjected to heat treatment at 400 °C for 1 h. The surface morphology, microstructural transformation, Vicker's microhardness, tribological and scratch resistance properties were studied with reference to the different carbide reinforcements as well as heat treatment. Inter-nodular space, craters and kinks are created due to the branching effect of nodules in the surface of the Ni-P-SiC (TiC) composite coatings. After the heat treatment, the matrix phase transformation was not altered due to the incorporation of SiC or TiC into the Ni-P coating; however, a slight increase in residual stress was identified from the XRD analysis. In addition, the content of carbon deposition was found to be higher in the matrix of Ni-P-SiC composite coating than that in the Ni-P-TiC coating. The agglomeration of SiC particles was higher than TiC particles in the coating matrix, which was also supported by the result of Zeta potential measurement. Heat treatment improved wear and coefficient of friction in the Ni-P-SiC and Ni-P-TiC composite coatings. Compared to Ni-P-SiC coating, Ni-P-TiC coating revealed the enhanced tribological and scratch resistance performance after the heat treatment.

4.
Nanotechnology ; 31(24): 244001, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32084657

RESUMO

Nanomaterials are the subject of extensive investigations due to their applications in medicine, multimodal imaging, volumetric displays, and photonics. Here, lanthanide-doped bismuth vanadate (BiVO4) upconverting nanoparticles (UCNPs) have been reported. The nanoparticles have been synthesized by a microwave hydrothermal method. As-synthesized nanoparticles are highly crystalline in the tetragonal zircon phase with particles about 200 nm in size. Under 980 nm excitation, intense multicolor visible and near-infrared upconversion emissions are observed. Moreover, broadband infrared downshifting emissions are also observed. Time-resolved emission measurements have been carried out to investigate the involved upconversion and energy transfer mechanism. The BiVO4-based UCNPs may provide a new class of nanomaterials for multifunctional applications.

5.
Nanotechnology ; 30(45): 454002, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31370049

RESUMO

Yb3+, Ln3+ (Ln3+ = Er3+/Tm3+, Er3+/Tm3+/Ho3+) doped BaMoO4 micro-octahedrons were synthesized by a hydrothermal process. The as-prepared phosphors were characterized by x-ray powder diffraction, field emission scanning electron microscopy, elemental mapping, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The upconversion luminescence properties of the samples were investigated under 980 nm near infrared excitation. The different concentrations of Er3+, Tm3+, and Ho3+ were used for tuning the multicolor (blue, green, and red) emissions. The multicolor emissions were investigated by Commission Internationale de l'Elcairage chromaticity and decay lifetime. The photon process as well as the energy transfer mechanism between the Yb3+ to Er3+, Tm3+, and Ho3+ were described.

6.
Nanotechnology ; 31(8): 084002, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675738

RESUMO

The different morphology and size of the zinc oxide (ZnO) were synthesized by a co-precipitation process via variation of calcination temperature from 400 °C to 900 °C. The nanorod, flower, hexagon, pentagon, and microflambeau morphologies were obtained. The flower morphology of ZnO tends to inactivate multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa) completely within 45 min under solar light irradiation better than other morphologies due to efficient separation electron-hole pairs. The prevention of charge recombination was confirmed by transient photocurrent response and electrochemical impedance spectra measurements. Electron spin resonance spectroscopy suggests that [Formula: see text] OH·, and h+ are responsible for P. aeruginosa inactivation in solar light. Furthermore, P. aeruginosa inactivation was confirmed by transmission electron microscope (TEM) images, DNA fragmentation (gel electrophoresis) and protein degradation (Bradford assay). The TEM mapping illustrates the damage of bacteria by active species but not the release of Zn2+ ions in the bacterial cell. So, this work provides a detailed investigation of morphology/size-dependent photocatalytic inactivation of a multidrug-resistant pathogen in solar light.

7.
J Environ Sci (China) ; 75: 84-97, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473310

RESUMO

A visible light-induced, Cu-doped BiVO4 photocatalyst was synthesized by a microwave hydrothermal method. The photocatalytic efficiency was investigated in the degradation of model water pollutants like Methylene Blue (dye) and ibuprofen (pharmaceuticals), as well as the inactivation of Escherichia coli (bacteria). The Cu-doped BiVO4 samples showed better efficiency than undoped BiVO4, and the 1wt.% Cu-doped BiVO4 sample showed the best efficiency. The degradation of Methylene Blue reached 95%, while the degradation of ibuprofen reached 75%, and the inactivation of E. coli reached 85% in irradiation with visible light. The appearance of additional absorption band shoulders and widening of the optical absorption in the visible range makes the prepared powder an efficient visible light-driven photocatalyst. Moreover, the formation of an in-gap energy state just above the valance band as determined by density functional theory (DFT) first principle calculation, facilitates the wider optical absorption range of the doped system. Similarly, this in-gap energy state also acts as an electron trap, which is favorable for the efficient separation and photoexcited charge carriers' transfer process. The formation of oxygen vacancies due to doping also improved the separation of the charge carrier, which promoted the trapping of electrons and inhibited electron hole recombination, thus increasing the photocatalytic activity. No decrease in the efficiency of the 1wt.% Cu-doped BiVO4 photocatalyst in the degradation of ibuprofen over three consecutive cycles revealed the stability of the photocatalyst towards photocorrosion. These findings highlight the multifunctional applications of Cu-doped BiVO4 in wastewater containing multiple pollutants.


Assuntos
Bismuto/química , Cobre/química , Modelos Químicos , Vanadatos/química , Poluentes Químicos da Água/química , Catálise , Luz , Fotólise , Semicondutores , Eliminação de Resíduos Líquidos , Águas Residuárias/química
8.
Nanotechnology ; 29(6): 064001, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29219840

RESUMO

An Ag-loaded BiVO4 visible-light-driven photocatalyst was synthesized by the microwave hydrothermal method followed by photodeposition. The photocatalytic performance of the synthesized samples was evaluated on a mixed dye (methylene blue and rhodamine B), as well as bisphenol A in aqueous solution. Similarly, the disinfection activities of synthesized samples towards the Gram-negative Escherichia coli (E. coli) in a model cell were investigated under irradiation with visible light (λ ≥ 420 nm). The synthesized samples have monoclinic scheelite structure. Photocatalytic results showed that all Ag-loaded BiVO4 samples exhibited greater degradation and a higher mineralization rate than the pure BiVO4, probably due to the presence of surface plasmon absorption that arises due to the loading of Ag on the BiVO4 surface. The optimum Ag loading of 5 wt% has the highest photocatalytic performance and greatest stability with pseudo-first-order rate constants of 0.031 min-1 and 0.023 min-1 for the degradation of methylene blue and rhodamine B respectively in a mixture with an equal volume and concentration of each dye. The photocatalytic degradation of bisphenol A reaches 76.2% with 5 wt% Ag-doped BiVO4 within 180 min irradiation time. Similarly, the Ag-loaded BiVO4 could completely inactivate E. coli cells within 30 min under visible light irradiation. The disruption of the cell membrane as well as degradation of protein and DNA exhibited constituted evidence for antibacterial activity towards E. coli. Moreover, the bactericidal mechanisms involved in the photocatalytic disinfection process were systematically investigated.


Assuntos
Antibacterianos/farmacologia , Bismuto/farmacologia , Luz , Semicondutores , Prata/farmacologia , Vanadatos/farmacologia , Compostos Benzidrílicos/química , Catálise/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Escherichia coli/ultraestrutura , Azul de Metileno/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Fenóis/química , Espectroscopia Fotoeletrônica , Fotólise/efeitos da radiação , Rodaminas/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
9.
Nanotechnology ; 29(15): 154001, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29388923

RESUMO

A visible light active Ag-decorated BiVO4-BiOBr dual heterojunction photocatalyst was prepared using a facile hydrothermal method, followed by the photodeposition of Ag. The photocatalytic activity of the synthesized samples was investigated by monitoring the change in malachite green (MG) concentration upon visible light irradiation. The synthesized sample was highly effective for the degradation of non-biodegradable MG. The enhanced activity observed was ascribed to the efficient separation and transfer of charge carriers across the dual heterojunction structure as verified by photoluminescence measurements. The removal of MG was primarily initiated by hydroxyl radicals and holes based on scavenger's effect. To gain insight into the degradation mechanism, both high performance liquid chromatography and high resolution-quantitative time of flight, electrospray ionization mass spectrometry measurements during the degradation process were carried out. The degradation primarily followed the hydroxylation and N-demethylation process. A possible reaction pathway is proposed on the basis of all the information obtained under various experimental conditions.

10.
Nanotechnology ; 29(20): 204004, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29488468

RESUMO

Yb3+ and Er3+ doped YVO4 (Yb3+/Er3+:YVO4) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb3+/Er3+:YVO4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2H11/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb3+. The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA