RESUMO
Stimulus repetition normally causes reduced neural activity in brain regions that process that stimulus. Some theories claim that this "repetition suppression" reflects local mechanisms such as neuronal fatigue or sharpening within a region, whereas other theories claim that it results from changed connectivity between regions, following changes in synchrony or top-down predictions. In this study, we applied dynamic causal modeling (DCM) on a public fMRI dataset involving repeated presentations of faces and scrambled faces to test whether repetition affected local (self-connections) and/or between-region connectivity in left and right early visual cortex (EVC), occipital face area (OFA) and fusiform face area (FFA). Face "perception" (faces versus scrambled faces) modulated nearly all connections, within and between regions, including direct connections from EVC to FFA, supporting a non-hierarchical view of face processing. Face "recognition" (familiar versus unfamiliar faces) modulated connections between EVC and OFA/FFA, particularly in the left hemisphere. Most importantly, immediate and delayed repetition of stimuli were also best captured by modulations of connections between EVC and OFA/FFA, but not self-connections of OFA/FFA, consistent with synchronization or predictive coding theories, though also possibly reflecting local mechanisms like synaptic depression.
Assuntos
Reconhecimento Facial , Imageamento por Ressonância Magnética , Humanos , Lobo Temporal/fisiologia , Reconhecimento Facial/fisiologia , Mapeamento Encefálico , Reconhecimento Psicológico/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodosRESUMO
A recent study by Blank, Alink and Büchel, uses multivariate neuroimaging to investigate how the human brain processes the strength of face-related expectations and explores whether these expectations are represented in the same regions that process facial stimuli. In line with predictive coding theories, their study presents compelling evidence that the brain adjusts its processing based on the certainty of expectations. This occurs exclusively within high-level face-sensitive regions, rather than across the entire processing hierarchy. Here we critically discuss these findings and outline potential directions for future research to better understand how the human brain expects, processes, and perceives images.
RESUMO
Repetition priming is a form of implicit memory, whereby classification or identification of a stimulus is improved by prior presentation of the same stimulus. Repetition priming is accompanied with a deceased fMRI signal for primed vs. unprimed stimuli in various brain regions, often called "repetition suppression," or RS. Previous studies proposed that RS in posterior regions is associated with priming of perceptual processes, whereas RS in more anterior (prefrontal) regions is associated with priming of conceptual processes. To clarify which regions exhibit reliable RS associated with perceptual and conceptual priming, we conducted a quantitative meta-analysis using coordinate-based activation likelihood estimation. This analysis included 65 fMRI studies that (i) employed visual repetition priming during either perceptual or conceptual tasks, (ii) demonstrated behavioral priming, and (iii) reported the results from whole-brain analyses. Our results showed that repetition priming was mainly associated with RS in left inferior frontal gyrus and fusiform gyrus. Importantly, RS in these regions was found for both perceptual and conceptual tasks, and no regions show RS that was selective to one of these tasks. These results question the simple distinction between conceptual and perceptual priming, and suggest consideration of other factors such as stimulus-response bindings.