Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(6): e1008611, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511263

RESUMO

Human infection with avian influenza A (H5N1) and (H7N9) viruses causes severe respiratory diseases. PB1-F2 protein is a critical virulence factor that suppresses early type I interferon response, but the mechanism of its action in relation to high pathogenicity is not well understood. Here we show that PB1-F2 protein of H7N9 virus is a particularly potent suppressor of antiviral signaling through formation of protein aggregates on mitochondria and inhibition of TRIM31-MAVS interaction, leading to prevention of K63-polyubiquitination and aggregation of MAVS. Unaggregated MAVS accumulated on fragmented mitochondria is prone to degradation by both proteasomal and lysosomal pathways. These properties are proprietary to PB1-F2 of H7N9 virus but not shared by its counterpart in WSN virus. A recombinant virus deficient of PB1-F2 of H7N9 induces more interferon ß in infected cells. Our findings reveal a subtype-specific mechanism for destabilization of MAVS and suppression of interferon response by PB1-F2 of H7N9 virus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Agregação Patológica de Proteínas/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cães , Células HEK293 , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/patologia , Interferon beta/genética , Interferon beta/metabolismo , Células Madin Darby de Rim Canino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Agregação Patológica de Proteínas/genética , Células THP-1 , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética
2.
J Med Virol ; 94(12): 6078-6090, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35941087

RESUMO

Single-cycle infectious virus can elicit close-to-natural immune response and memory. One approach to generate single-cycle severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is through deletion of structural genes such as spike (S) and nucleocapsid (N). Transcomplementation of the resulting ΔS or ΔN virus through enforced expression of S or N protein in the cells gives rise to a live but unproductive virus. In this study, ΔS and ΔN BAC clones were constructed and their live virions were rescued by transient expression of S and N proteins from the ancestral and the Omicron strains. ΔS and ΔN virions were visualized by transmission electron microscopy. Virion production of ΔS was more efficient than that of ΔN. The coated S protein from ΔS was delivered to infected cells in which the expression of N protein was also robust. In contrast, expression of neither S nor N was detected in ΔN-infected cells. ΔS underwent viral RNA replication, induced type I interferon (IFN) response, but did not form plaques. Despite RNA replication in cells, ΔS infection did not produce viral progeny in culture supernatant. Interestingly, viral RNA replication was not further enhanced upon overexpression of S protein. Taken together, our work provides a versatile platform for development of single-cycle vaccines for SARS-CoV-2.


Assuntos
COVID-19 , Interferon Tipo I , Vacinas contra COVID-19 , Humanos , Interferon Tipo I/genética , RNA Viral/genética , Replicon , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
3.
J Leukoc Biol ; 107(5): 763-771, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323899

RESUMO

Influenza A virus (IAV) causes not only seasonal respiratory illness, but also outbreaks of more severe disease and pandemics when novel strains emerge as a result of reassortment or interspecies transmission. PB1-F2 is an IAV protein expressed from the second open reading frame of PB1 gene. Small as it is, PB1-F2 is a critical virulence factor. Multiple key amino acid residues and motifs of PB1-F2 have been shown to influence the virulence of IAV in a strain- and host-specific manner, plausibly through the induction of apoptotic cell death, modulation of type I IFN response, activation of inflammasome, and facilitation of secondary bacterial infection. However, the exact role of PB1-F2 in IAV pathogenesis remains unexplained. Through reanalysis of the current literature, we redefine PB1-F2 as an ambivalent innate immune modulator that determines IAV infection outcome through induction of immune cell death, differential modulation of early- and late-type I IFN response, and promotion of pathogenic inflammation. PB1-F2 functions both intracellularly and extracellularly. Further investigations of the mechanistic details of PB1-F2 action will shed new light on immunopathogenesis of IAV infection.


Assuntos
Imunidade Inata/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/imunologia , Proteínas Virais/imunologia , Fatores de Virulência/imunologia , Humanos , Virulência/imunologia
4.
J Leukoc Biol ; 108(5): 1655-1663, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32386456

RESUMO

Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1-F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1-F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL-1ß and IL-18. On the other hand, when expressed intracellularly PB1-F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1-F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL-1ß secretion by PB1-F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte-derived macrophages. Mechanistically, H7N9 PB1-F2 selectively mitigated RNA-induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1-F2 of H7N9 virus did not affect extracellular PB1-F2-induced NLRP3 inflammasome maturation. In contrast, PB1-F2 of WSN laboratory strain of human IAV effectively suppressed IL-1ß processing and secretion induced by various stimuli including NLRP3, AIM2, and pro-IL-1ß. This subtype-specific effect of PB1-F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS-dependent activation of NLRP3 inflammasome by H7N9 PB1-F2 have implications in viral pathogenesis and antiviral development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Inflamassomos/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , RNA Viral/imunologia , Proteínas Virais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Células HEK293 , Humanos , Inflamassomos/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA