Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomed Eng Online ; 23(1): 22, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369455

RESUMO

BACKGROUND: Adolescent idiopathic scoliosis (AIS), three-dimensional spine deformation, affects body motion. Previous research had indicated pathological gait patterns of AIS. However, the impact of the curve number on the walking mechanism has not been established. Therefore, this study aimed to compare the gait symmetry and kinematics in AIS patients with different curve numbers to healthy control. RESULTS: In the spinal region, double curves AIS patients demonstrated a smaller sagittal symmetry angle (SA) and larger sagittal convex ROM of the trunk and lower spine than the control group. In the lower extremities, the single curve patients showed a significantly reduced SA of the knee joint in the frontal plane, while the double curves patients showed a significantly reduced SA of the hip in the transverse plane. CONCLUSION: The curve number indeed affects gait symmetry and kinematics in AIS patients. The double curves patients seemed to adopt a more "careful walking" strategy to compensate for the effect of spinal deformation on sensory integration deficits. This compensation mainly occurred in the sagittal plane. Compared to double curves patients, single curve patients unitized a similar walking strategy with healthy subjects.


Assuntos
Escoliose , Humanos , Adolescente , Fenômenos Biomecânicos , Caminhada , Coluna Vertebral , Marcha
2.
Biomed Eng Online ; 22(1): 122, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087307

RESUMO

BACKGROUND: Gait model consists of a marker set and a segment pose estimation algorithm. Plugin marker set and inverse kinematic algorithm (IK.) are prevalent in gait analysis, especially musculoskeletal motion analysis. Adding extra markers for the plugin marker set could increase the robustness to marker misplacement, motion artifacts, and even markers occlusion. However, how the different marker sets affect the gait analysis's kinematic output is unclear. Therefore, this study aims to investigate the effect of marker sets on the kinematic output during level walking in different populations. RESULTS: In all three planes, there are significant differences (P < 0.05) between marker sets in some kinematic variables at the hip, knee, and ankle. In different populations, the kinematic variables that show significant differences varied. When comparing the kinematic differences between populations using the two marker sets separately, the range of motion (ROM) of hip flexion was only found to be a significant difference using the redundant marker set, while the peak internal rotation at the knee was only found a significant difference using plugin marker set. In addition, the redundant marker set shows less intra-subject variation than the plugin marker set. CONCLUSION: The findings in this study demonstrate the importance of marker set selection since it could change the result when comparing the kinematic differences between populations. Therefore, it is essential to increase the caution in explaining the result when using different marker sets. It is crucial to use the same marker set, and the redundant marker set might be a better choice for gait analysis.


Assuntos
Marcha , Joelho , Humanos , Fenômenos Biomecânicos , Caminhada , Articulação do Joelho , Amplitude de Movimento Articular , Rotação
3.
Stroke ; 53(4): 1373-1385, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35135326

RESUMO

BACKGROUND: Ischemic stroke is a leading cause of death and disability worldwide. However, the time window for quickly dissolving clots and restoring cerebral blood flow, using tissue-type plasminogen activator treatment is rather limited, resulting in many patients experiencing long-term functional impairments if not death. This study aims to determine the roles of cranial bone transport (CBT), a novel, effective, and simple surgical technique, in the recovery of ischemic stroke using middle cerebral artery occlusion (MCAO) rat model. METHODS: CBT was performed by slowly sliding a bone segment in skull with a special frame and a speed of 0.25 mm/12 hours for 10 days following MCAO. Morris water maze, rotarod test, and catwalk gait analysis were used to study the neurological behaviors, and infarct area and cerebral flow were evaluated during CBT process. Immunofluorescence staining of CD31 and Nestin/Sox2 (sex determining region Y box 2) was performed to study the angiogenesis and neurogenesis. OVA-A647 (ovalbumin-Alexa Fluor 647) was intracisterna magna injected to evaluate the meningeal lymphatic drainage function. RESULTS: CBT treatment has significantly reduced the ischemic lesions areas and improved the neurological deficits in MCAO rats compared with the rats in the control groups. CBT treatment significantly promoted angiogenesis and neurogenesis in the brain of MCAO rats. The drainage function of meningeal lymphatic vessels in MCAO rats was significantly impaired compared with normal rats. Ablation of meningeal lymphatic drainage led to increased neuroinflammation and aggravated neurological deficits and ischemic injury in MCAO rats. CBT treatment significantly improved the meningeal lymphatic drainage function and alleviated T-cell infiltration in MCAO rats. CONCLUSIONS: This study provided evidence for the possible mechanisms on how CBT attenuates ischemic stroke injury and facilitates rapid neuronal function recovery, suggesting that CBT may be an alternative treatment strategy for managing ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Animais , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/patologia , Neovascularização Patológica , Neurogênese , Ratos , Crânio/patologia
4.
FASEB J ; 33(7): 8565-8577, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30991839

RESUMO

Fracture remains one of the most common traumatic conditions in orthopedic surgery. The use of mesenchymal stem cells (MSCs) to augment fracture repair is promising. Leucine-rich repeat-containing GPCR 5 (Lgr5), a transmembrane protein, has been identified as a novel adult stem cell marker in various organs and tissues. However, the roles of Lgr5 in MSCs are not fully understood. In this study, we investigated cellular functions of Lgr5 in MSCs and its potential implications in treating fracture. Lgr5-overexpressing MSCs (MSCLgr5) were established in murine SV40 promoter-driven luciferase reporter MSC line through virus transfection. Results of real-time quantitative PCR and Western blot analysis confirmed the increased expression of Lgr5 in MSCLgr5. MSCLgr5 exhibited increased osteogenic capacity, which may result from elevated expression of ß-catenin and phosphorylated ERK1/2 within the nuclear region of cells. In contrast, inhibition of Lgr5 expression decreased the osteogenic differentiation ability of MSCs, accompanied with increased mitochondrial fragmentation and reduced expression of ß-catenin. Local transplantation of MSCLgr5 at fracture sites accelerated fracture healing via enhanced osteogenesis and angiogenesis. MSCLgr5 stimulated the tube formation capacity of HUVECs in a Matrigel coculture system in vitro significantly. Taken together, results suggest that Lgr5 is implicated in the cellular processes of osteogenic differentiation of MSCs through regulation of Wnt and ERK signaling pathways and mitochondrial dynamics in fusion and fission. Inhibition of Lgr5 expression induced increased mitochondrial fragmentation and suppression of osteogenesis. MSCLgr5 exhibited enhanced therapeutic efficacy for fracture healing, which may serve as a superior cell source for bone tissue repair.-Lin, W., Xu, L., Pan, Q., Lin, S., Feng, L., Wang, B., Chen, S., Li, Y., Wang, H., Li, Y., Wang, Y., Lee, W. Y. W., Sun, D., Li, G. Lgr5-overexpressing mesenchymal stem cells augment fracture healing through regulation of Wnt/ERK signaling pathways and mitochondrial dynamics.


Assuntos
Consolidação da Fratura/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Mesenquimais/metabolismo , Dinâmica Mitocondrial/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia
5.
Cancer Invest ; 36(8): 431-457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30325244

RESUMO

NK cell cancer immunotherapy is an emerging anti-tumour therapeutic strategy that explores NK cell stimulation. In this review, we address strategies developed to circumvent limitations to clinical application of NK cell-based therapies, and comprehensively review the design and results of clinical trials conducted in the past 10 years (2008-2018) to test their therapeutic potential. NK cell-based immunotherapy of solid cancers remains controversial, but merit further detailed investigation.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/transplante , Neoplasias/terapia , Ensaios Clínicos como Assunto , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Projetos de Pesquisa , Transplante Homólogo , Resultado do Tratamento
6.
Eur Spine J ; 26(6): 1586-1594, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-26846315

RESUMO

PURPOSE: Osteopenia has been widely reported in about 30 % of girls with adolescent idiopathic scoliosis (AIS). However, the bone quality profile of the 70 % non-osteopenic AIS defined by areal bone mineral density (BMD) with conventional dual-energy X-ray absorptiometry (DXA) has not been adequately studied. Our purpose was to verify whether abnormal volumetric BMD (vBMD) and bone structure (morphometry and micro-architecture) also existed in the non-osteopenic AIS when compared with matched controls using both DXA and high-resolution peripheral computed tomography (HR-pQCT). METHODS: This was a case-control cross-sectional study. 257 AIS girls with a mean age of 12.7 (SD = 0.8) years old and 187 age- and gender-matched normal controls with an average age of 12.9 (SD = 0.5) years old were included. Areal BMD (aBMD) and bone quality were measured with standard DXA and HR-pQCT, respectively. The parameters of HR-pQCT could be categorized as bone morphometry, vBMD and bone micro-architecture. The results were compared between the osteopenic AIS and osteopenic control, and between the non-osteopenic AIS and non-osteopenic control. RESULTS: In addition to the lower aBMD and vBMD, osteopenic AIS showed significantly greater cortical perimeter and trabecular area than the osteopenic control even after adjustments of age (P < 0.05). Non-osteopenic AIS also showed significantly lower aBMD together with lower cortical area, thickness and vBMD than the non-osteopenic control (P < 0.05). After adjustments of age, cortical area and vBMD, and trabecular number and separation continued to show statistical significance (P < 0.05). Both the osteopenic and non-osteopenic AIS subgroups revealed significant abnormal bone quality parameters from that in the control group after adjustments of age and aBMD with multi-linear regression analysis (P < 0.05). CONCLUSIONS: The present study specifically defined the abnormal profile of bone quality in the osteopenic and non-osteopenic AIS for the first time. Both the osteopenic and non-osteopenic AIS were likely to have relatively lower bone mineral status and abnormal bone morphometry, micro-architecture and volumetric density profile compared with their normal matched controls. The observed abnormalities were suggestive of decreased endocortical bone apposition or active endocortical resorption that could affect the mechanical bone strength in AIS. The underlying pathomechanism might be attributed to abnormal bone modeling/remodeling that could be associated with the etiopathogenesis of AIS.


Assuntos
Densidade Óssea , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/patologia , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/patologia , Escoliose/complicações , Absorciometria de Fóton , Adolescente , Doenças Ósseas Metabólicas/complicações , Estudos de Casos e Controles , Criança , Estudos Transversais , Feminino , Humanos , Tamanho do Órgão , Escoliose/diagnóstico por imagem , Escoliose/patologia , Tomografia Computadorizada por Raios X/métodos
7.
Calcif Tissue Int ; 98(3): 263-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26603303

RESUMO

The inhibition of sclerostin by the systemic administration of a monoclonal antibody (Scl-Ab) significantly increased bone mass and strength in fractured bones in animal models and non-fractured bones in ovariectomised (OVX) rats. In this study, the effects of Scl-Ab on healing were examined in a closed fracture model in OVX rats. Sixty Sprague-Dawley rats underwent an ovariectomy or a sham operation at 4 months of age, and a closed fracture of the right femur was performed 3 months later. Subcutaneous injections with Scl-Ab (25 mg/kg) or saline were then administered on day 1 after the fracture and twice a week for 8 weeks (n = 20 per group), at which time the fractured femurs were harvested for micro-computed tomography analysis, four-point bending mechanical testing and histomorphometric analysis to examine bone mass, bone strength and dynamic bone formation at the fracture site. The angiogenesis at the fracture site was also examined. Bone marrow stem cells were also isolated from the fractured bone to perform a colony-forming unit (CFU) assay and an alkaline phosphatase-positive (ALP(+)) CFU assay. OVX rats treated with Scl-Ab for 8 weeks had significantly increased bone mineral density and relative bone volume compared with OVX rats treated with saline. Similarly, maximum loading, energy to maximum load and stiffness in Scl-Ab-treated OVX rats were significantly higher than those in saline controls. The mineral apposition rate (MAR), mineralising surface (MS/BS) and bone formation rate (BFR/BS) were also significantly increased in Scl-Ab-treated group compared with the saline-treated group in OVX rats. Furthermore, the Scl-Ab-treated group had more CFUs and ALP(+) CFUs than the saline-treated group in OVX rats. No significant difference in angiogenesis at the fracture site was found between the groups. Our study demonstrated that Scl-Ab helped to increase bone mass, bone strength and bone formation at the fracture site in a closed femoral fracture model in OVX rats. Bone marrow stem cells in OVX rats injected with Scl-Ab also had increased CFUs and ALP(+) CFUs.


Assuntos
Anticorpos/química , Proteínas Morfogenéticas Ósseas/química , Fraturas do Fêmur/imunologia , Fosfatase Alcalina/metabolismo , Animais , Peso Corporal , Células da Medula Óssea/citologia , Feminino , Fraturas do Fêmur/diagnóstico por imagem , Consolidação da Fratura , Marcadores Genéticos , Injeções Subcutâneas , Neovascularização Patológica , Osteogênese , Ovariectomia , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Estresse Mecânico , Microtomografia por Raio-X
9.
Apoptosis ; 20(1): 75-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25416134

RESUMO

Traditional Chinese medicine is recently emerged as anti-cancer therapy or adjuvant with reduced side-effects and improved quality of life. In the present study, an active ingredient, 1,6,7-trihydroxyxanthone (THA), derived from Goodyera oblongifolia was found to strongly suppress cell growth and induce apoptosis in liver cancer cells. MicroRNAs are a group of small non-coding RNAs that regulate gene expression at post-transcriptional levels. Our results demonstrated that miR-218 was up-regulated and oncogene Bmi-1 was down-regulated by THA treatment. Further investigation showed that THA-induced-miR-218 up-regulation could lead to activation of tumor suppressor P16(Ink4a) and P14(ARF), the main down-stream targets of Bmi-1. In conclusion, THA might be a potential anti-cancer drug candidate, at least in part, through the activation of miR-218 and suppression of Bmi-1 expression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas , MicroRNAs/metabolismo , Orchidaceae/química , Complexo Repressor Polycomb 1/metabolismo , Xantonas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , MicroRNAs/genética , Extratos Vegetais/farmacologia , Xantonas/química
10.
J Bone Miner Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832703

RESUMO

Low bone mineral density and impaired bone qualities have been shown to be important prognostic factors for curve progression in Adolescent Idiopathic Scoliosis (AIS). There is no evidence-based integrative interpretation method to analyse high-resolution peripheral quantitative computed tomography (HR-pQCT) data in AIS. This study aimed to (a) utilize unsupervised machine learning to cluster bone microarchitecture phenotypes on HR-pQCT parameters in AIS girls, (b) assess the phenotypes' risk of curve progression and progression to surgical threshold at skeletal maturity (primary cohort), and (c) investigate risk of curve progression in a separate cohort of mild AIS girls whose curve severity did not reach bracing threshold at recruitment (secondary cohort). Patients were followed up prospectively for 6.22 ± 0.33 years in the primary cohort (N = 101). Three bone microarchitecture phenotypes were clustered by Fuzzy C-Means at time of peripubertal peak height velocity (PHV). Phenotype-1 had normal bone characteristics. Phenotype-2 was characterized by low bone volume and high cortical bone density, and Phenotype-3 had low cortical and trabecular bone density and impaired trabecular microarchitecture. The difference in bone qualities amongst the phenotypes was significant at peripubertal PHV and continued to skeletal maturity. Phenotype-3 had significantly increased risk of curve progression to surgical threshold at skeletal maturity (Odd Ratios (OR) = 4.88; 95% Confidence Interval (CI): 1.03-28.63). In the secondary cohort (N = 106), both Phenotype-2 (adjusted OR = 5.39; 95%CI: 1.47-22.76) and Phenotype-3 (adjusted OR = 3.67; 95%CI: 1.05-14.29) had increased risk of curve progression ≥6° with mean follow-up of 3.03 ± 0.16 years. In conclusion, three distinct bone microarchitecture phenotypes could be clustered by unsupervised machine learning on HR-pQCT generated bone parameters at peripubertal PHV in AIS. The bone qualities reflected by these phenotypes were found to have significant differentiating risk of curve progression and progression to surgical threshold at skeletal maturity in AIS.


Adolescent Idiopathic Scoliosis (AIS) is an abnormal spinal curvature commonly presents during puberty growth. Evidence has shown that low bone mineral density and impaired bone qualities are important risk factors for curve progression in AIS. High-resolution peripheral quantitative computed tomography (HR-pQCT) has improved our understanding of bone qualities in AIS. It generates a large amount of quantitative and qualitative bone parameters from a single measurement, but the data are not easy for clinicians to interpret and analyse. This study enrolled AIS girls and used unsupervised machine learning model to analyse their HR-pQCT data at first clinic visit. The model clustered the patients into 3 bone microarchitecture phenotypes (i.e. Phenotype-1: normal, Phenotype-2: low bone volume and high cortical bone density, and Phenotype-3: low cortical and trabecular bone density and impaired trabecular microarchitecture). They were longitudinally followed up for 6 years until skeletal maturity. We observed the three phenotypes were persistent, and Phenotype-3 had a significantly increased risk of curve progression to severity that requires invasive spinal surgery (Odds Ratio = 4.88, P = 0.029). The difference in bone qualities reflected by these 3 distinct phenotypes could aid clinicians to differentiate risk of curve progression and surgery at early stages of AIS.

11.
Biomed Pharmacother ; 173: 116402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471277

RESUMO

Oleanolic acid (OA) is previously shown to exert bone protective effects in aged animals. However, its role in regulating osteoblastic vitamin D bioactivation, which is one of major causes of age-related bone loss, remains unclear. Our results revealed that treatment of OA significantly increased skeletal CYP27B1 expression and circulating 1,25(OH)2D3 in ovariectomized mice (p <0.01). Moreover, OA upregulated CYP27B1 protein expression and activity, as well as the vitamin D-responsive bone markers alkaline phosphatase (ALP) activity and osteopontin (OPN) protein expression, in human osteoblast-like MG-63 cells (p<0.05). CYP27B1 expression increased along with the osteoblastic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). CYP27B1 expression and cellular 1,25(OH)2D3 production were further potentiated by OA in cells at mature osteogenic stages. Notably, our study suggested that the osteogenic actions of OA were CYP27B1 dependent. In summary, the bone protective effects of OA were associated with the induction of CYP27B1 activity and expression in bone tissues and osteoblastic lineages. Hence, OA might be a potential approach for management of age-related bone loss.


Assuntos
Anabolizantes , Ácido Oleanólico , Osteoporose , Vitamina D/análogos & derivados , Humanos , Animais , Camundongos , Idoso , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Ácido Oleanólico/farmacologia , Vitamina D/farmacologia , Vitamina D/metabolismo , Osso e Ossos/metabolismo , Vitaminas
12.
Adv Healthc Mater ; 12(10): e2202581, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36571465

RESUMO

Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood. This is essential in order to take one step closer to producing functional cartilaginous constructs for clinical use. Recently, biopolymers have aroused much attention due to their versatility, processability, and flexibility because the properties can be tailored to match the requirements of AC. This review highlights polymeric scaffolds developed in the past decade for reconstruction of zonal AC layers including the superficial zone, middle zone, and deep zone by means of exogenous stimuli such as physical, mechanical, and biological/chemical signals. The mimicked properties are reviewed in terms of the biochemical composition and organization, cell fate (morphology, orientation, and differentiation), as well as mechanical properties and finally, the challenges and potential ways to tackle them are discussed.


Assuntos
Cartilagem Articular , Materiais Biocompatíveis/química , Sinais (Psicologia) , Engenharia Tecidual , Diferenciação Celular
13.
Front Genet ; 14: 1161817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448626

RESUMO

Background: Osteoporosis is a major causative factor of the global burden of disease and disability, characterized by low bone mineral density (BMD) and high risks of fracture. We aimed to identify putative causal proteins and druggable targets of osteoporosis. Methods: This study utilized the largest GWAS summary statistics on plasma proteins and estimated heel BMD (eBMD) to identify causal proteins of osteoporosis by mendelian randomization (MR) analysis. Different GWAS datasets were used to validate the results. Multiple sensitivity analyses were conducted to evaluate the robustness of primary MR findings. We have also performed an enrichment analysis for the identified causal proteins and evaluated their druggability. Results: After Bonferroni correction, 67 proteins were identified to be causally associated with estimated BMD (eBMD) (p < 4 × 10-5). We further replicated 38 of the 67 proteins to be associated with total body BMD, lumbar spine BMD, femoral neck BMD as well as fractures, such as RSPO3, IDUA, SMOC2, and LRP4. The findings were supported by sensitivity analyses. Enrichment analysis identified multiple Gene Ontology items, including collagen-containing extracellular matrix (GO:0062023, p = 1.6 × 10-10), collagen binding (GO:0005518, p = 8.6 × 10-5), and extracellular matrix structural constituent (GO:0005201, p = 2.7 × 10-5). Conclusion: The study identified novel putative causal proteins for osteoporosis which may serve as potential early screening biomarkers and druggable targets. Furthermore, the role of plasma proteins involved in collagen binding and extracellular matrix in the development of osteoporosis was highlighted. Further studies are warranted to validate our findings and investigate the underlying mechanism.

14.
J Orthop Translat ; 39: 12-20, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36605620

RESUMO

Background: Primary sarcopenia is usually known as age-related skeletal muscle loss; however, other factors like endocrine, lifestyle and inflammation can also cause muscle loss, known as secondary sarcopenia. Although many studies have used different sarcopenia animal models for exploring the underlying mechanism and therapeutic approaches for sarcopenia, limited study has provided evidence of the relevance of these animal models. This study aims to investigate the similarity and difference in muscle qualities between primary and secondary sarcopenia mice models, using naturally aged mice and dexamethasone-induced mice. Methods: 21-month-old mice were used as naturally aged primary sarcopenia mice and 3-month-old mice received daily intraperitoneal injection of dexamethasone (20 mg/ kg body weight) for 10 days were used as secondary sarcopenia model. This study provided measurements for muscle mass and functions, including Dual-energy X-ray absorptiometry (DXA) scanning, handgrip strength test and treadmill running to exhaustion test. Besides, muscle contraction, muscle fibre type measurements and gene expression were also performed to provide additional information on muscle qualities. Results: The results suggest two sarcopenia animal models shared a comparable decrease in forelimb lean mass, muscle fibre size, grip strength and muscle contraction ability. Besides, the upregulation of protein degradation genes was also observed in two sarcopenia animal models. However, only primary sarcopenia mice were identified with an early stage of mtDNA deletion. Conclusion: Collectively, this study evaluated that the dexamethasone-induced mouse model could be served as an alternative model for primary sarcopenia, according to the comparable muscle mass and functional changes. However, whether dexamethasone-induced mice can be used as an animal model when studying the molecular mechanisms of sarcopenia needs to be carefully evaluated. The translational potential of this article: The purpose of sarcopenia research is to investigate appropriate treatments for reversing the loss of skeletal muscle mass and functions. Using animal models for the preclinical study could predict the safety and efficacy of the treatments. This study compared the typical age-related sarcopenia mice model and dexamethasone-induced secondary sarcopenia mice to provide evidence of the pathological and functional changes in the mice models.

15.
Stem Cell Res Ther ; 14(1): 195, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542297

RESUMO

BACKGROUND: High dosage of dexamethasone (Dex) is an effective treatment for multiple diseases; however, it is often associated with severe side effects including muscle atrophy, resulting in higher risk of falls and poorer life quality of patients. Cell therapy with mesenchymal stem cells (MSCs) holds promise for regenerative medicine. In this study, we aimed to investigate the therapeutic efficacy of systemic administration of adipose-derived mesenchymal stem cells (ADSCs) in mitigating the loss of muscle mass and strength in mouse model of DEX-induced muscle atrophy. METHODS: 3-month-old female C57BL/6 mice were treated with Dex (20 mg/kg body weight, i.p.) for 10 days to induce muscle atrophy, then subjected to intravenous injection of a single dose of ADSCs ([Formula: see text] cells/kg body weight) or vehicle control. The mice were killed 7 days after ADSCs treatment. Body compositions were measured by animal DXA, gastrocnemius muscle was isolated for ex vivo muscle functional test, histological assessment and Western blot, while tibialis anterior muscles were isolated for RNA-sequencing and qPCR. For in vitro study, C2C12 myoblast cells were cultured under myogenic differentiation medium for 5 days following 100 [Formula: see text]M Dex treatment with or without ADSC-conditioned medium for another 4 days. Samples were collected for qPCR analysis and Western blot analysis. Myotube morphology was measured by myosin heavy chain immunofluorescence staining. RESULTS: ADSC treatment significantly increased body lean mass (10-20%), muscle wet weight (15-30%) and cross-sectional area (CSA) (~ 33%) in DEX-induced muscle atrophy mice model and down-regulated muscle atrophy-associated genes expression (45-65%). Hindlimb grip strength (~ 37%) and forelimb ex vivo muscle contraction property were significantly improved (~ 57%) in the treatment group. Significant increase in type I fibres (~ 77%) was found after ADSC injection. RNA-sequencing results suggested that ERK1/2 signalling pathway might be playing important role underlying the beneficial effect of ADSC treatment, which was confirmed by ERK1/2 inhibitor both in vitro and in vivo. CONCLUSIONS: ADSCs restore the pathogenesis of Dex-induced muscle atrophy with an increased number of type I fibres, stronger muscle strength, faster recovery rate and more anti-fatigue ability via ERK1/2 signalling pathway. The inhibition of muscle atrophy-associated genes by ADSCs offered this treatment as an intervention option for muscle-associated diseases. Taken together, our findings suggested that adipose-derived mesenchymal stem cell therapy could be a new treatment option for patient with Dex-induced muscle atrophy.


Assuntos
Sistema de Sinalização das MAP Quinases , Células-Tronco Mesenquimais , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Atrofia Muscular/terapia , Atrofia Muscular/tratamento farmacológico , Músculo Esquelético/metabolismo , Células-Tronco Mesenquimais/metabolismo , Dexametasona/efeitos adversos , Peso Corporal , RNA/metabolismo
16.
Bioact Mater ; 22: 312-324, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36263100

RESUMO

Functional tissue engineering strategies provide innovative approach for the repair and regeneration of damaged cartilage. Hydrogel is widely used because it could provide rapid defect filling and proper structure support, and is biocompatible for cell aggregation and matrix deposition. Efforts have been made to seek suitable scaffolds for cartilage tissue engineering. Here Alg-DA/Ac-ß-CD/gelatin hydrogel was designed with the features of physical and chemical multiple crosslinking and self-healing properties. Gelation time, swelling ratio, biodegradability and biocompatibility of the hydrogels were systematically characterized, and the injectable self-healing adhesive hydrogel were demonstrated to exhibit ideal properties for cartilage repair. Furthermore, the new hydrogel design introduces a pre-gel state before photo-crosslinking, where increased viscosity and decreased fluidity allow the gel to remain in a semi-solid condition. This granted multiple administration routes to the hydrogels, which brings hydrogels the ability to adapt to complex clinical situations. Pulsed electromagnetic fields (PEMF) have been recognized as a promising solution to various health problems owing to their noninvasive properties and therapeutic potentials. PEMF treatment offers a better clinical outcome with fewer, if any, side effects, and wildly used in musculoskeletal tissue repair. Thereby we propose PEMF as an effective biophysical stimulation to be 4th key element in cartilage tissue engineering. In this study, the as-prepared Alg-DA/Ac-ß-CD/gelatin hydrogels were utilized in the rat osteochondral defect model, and the potential application of PEMF in cartilage tissue engineering were investigated. PEMF treatment were proven to enhance the quality of engineered chondrogenic constructs in vitro, and facilitate chondrogenesis and cartilage repair in vivo. All of the results suggested that with the injectable self-healing adhesive hydrogel and PEMF treatment, this newly proposed tissue engineering strategy revealed superior clinical potential for cartilage defect treatment.

17.
Cell Death Differ ; 30(1): 152-167, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36153410

RESUMO

Exercise in later life is important for bone health and delays the progression of osteoporotic bone loss. Osteocytes are the major bone cells responsible for transforming mechanical stimuli into cellular signals through their highly specialized lacunocanalicular networks (LCN). Osteocyte activity and LCN degenerate with aging, thus might impair the effectiveness of exercise on bone health; however, the underlying mechanism and clinical implications remain elusive. Herein, we showed that deletion of Sirt3 in osteocytes could impair the formation of osteocyte dendritic processes and inhibit bone gain in response to exercise in vivo. Mechanistic studies revealed that Sirt3 regulates E11/gp38 through the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling pathway. Additionally, the Sirt3 activator honokiol enhanced the sensitivity of osteocytes to fluid shear stress in vitro, and intraperitoneal injection of honokiol reduced bone loss in aged mice in a dose-dependent manner. Collectively, Sirt3 in osteocytes regulates bone mass and mechanical responses through the regulation of E11/gp38. Therefore, targeting Sirt3 could be a novel therapeutic strategy to prevent age-related bone loss and augment the benefits of exercise on the senescent skeleton.


Assuntos
Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Osso e Ossos/metabolismo , Osteócitos/metabolismo , Transdução de Sinais
18.
Bone ; 166: 116594, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341948

RESUMO

AIM: Abnormal osteocyte lacunar morphology in adolescent idiopathic scoliosis (AIS) has been reported while the results were limited by the number of osteocyte lacunae being quantified. The present study aimed to validate previous findings through (a) comparing morphological features of osteocyte lacunae between AIS patients and controls in spine and ilium using a large-scale assessment, and (b) investigating whether there is an association between the acquired morphological features of osteocyte lacunae and disease severity in AIS. METHOD: Trabecular bone tissue of the facet joint of human vertebrae on both concave and convex sides at the apex of the scoliotic curve were collected from 4 AIS and 5 congenital scoliosis (CS) patients, and also at the same anatomic site from 3 non-scoliosis (NS) subjects intraoperatively. Trabecular bone tissue from ilium was obtained from 12 AIS vs 9 NS subjects during surgery. Osteocyte lacunae were assessed using ultra-high-resolution micro-computed tomography. Clinical information such as age, body mass index (BMI) and radiological Cobb angle of the major curve were collected. RESULTS: There was no significant difference between density of osteocyte lacuna and bone volume fraction (BV/TV) between groups. A total of 230,076 and 78,758 osteocyte lacunae from facet joints of apical vertebra of scoliotic curve and iliac bone were included in the analysis, respectively. In facet joint bone biopsies, lacunar stretch (Lc.St) was higher, and lacunar equancy (Lc.Eq), lacunar oblateness (Lc.Ob), and lacunar sphericity (Lc.Sr) were lower in AIS and CS groups when compared with NS group. CA side was associated with higher Lc.St when compared with CX side. In iliac bone biopsies, Lc.Ob was higher and lacunar surface area (Lc.S) was lower in AIS group than NS group. Median values of Lc.St, Lc.Eq and Lc.Sr were significantly associated with radiological Cobb angle with adjustment for age and BMI (R-squared: 0.576, 0.558 and 0.543, respectively). CONCLUSIONS: This large-scale assessment of osteocyte lacunae confirms that AIS osteocyte lacunae are more oblate in iliac bone that is less influenced by asymmetric loading of the deformed spine than the vertebrae. Shape of osteocyte lacunae in iliac bone is associated with radiological Cobb angle of the major curve in AIS patients, suggesting the likelihood of systemic abnormal osteocyte morphology in AIS. Osteocyte lacunae from concave side of scoliotic curves were more stretched in both AIS and CS groups, which is likely secondary to asymmetric mechanical loading.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Microtomografia por Raio-X , Osteócitos/patologia , Escoliose/diagnóstico por imagem , Coluna Vertebral/patologia
19.
Front Pediatr ; 11: 1258454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027290

RESUMO

Introduction: Adolescent idiopathic scoliosis (AIS) is characterized by deranged bone and muscle qualities, which are important prognostic factors for curve progression. This retrospective case-control study aims to investigate whether the baseline muscle parameters, in addition to the bone parameters, could predict curve progression in AIS. Methods: The study included a cohort of 126 female patients diagnosed with AIS who were between the ages of 12 and 14 years old at their initial clinical visit. These patients were longitudinally followed up every 6 months (average 4.08 years) until they reached skeletal maturity. The records of these patients were thoroughly reviewed as part of the study. The participants were categorized into two sub-groups: the progressive AIS group (increase in Cobb angle of ≥6°) and the stable AIS group (increase in Cobb angle <6°). Clinical and radiological assessments were conducted on each group. Results: Cobb angle increase of ≥6° was observed in 44 AIS patients (34.9%) prior to skeletal maturity. A progressive AIS was associated with decreased skeletal maturity and weight, lower trunk lean mass (5.7%, p = 0.027) and arm lean mass (8.9%, p < 0.050), weaker dominant handgrip strength (8.8%, p = 0.027), deranged cortical compartment [lower volumetric bone mineral density (vBMD) by 6.5%, p = 0.002], and lower bone mechanical properties [stiffness and estimated failure load lowered by 13.2% (p = 0.005) and 12.5% (p = 0.004)]. The best cut-off threshold of maximum dominant handgrip strength is 19.75 kg for distinguishing progressive AIS from stable AIS (75% sensitivity and 52.4% specificity, p = 0.011). Discussion: Patients with progressive AIS had poorer muscle and bone parameters than patients with stable AIS. The implementation of a cut-off threshold in the baseline dominant handgrip strength could potentially be used as an additional predictor, in addition to bone parameters, for identifying individuals with AIS who are at higher risk of experiencing curve progression.

20.
Adv Sci (Weinh) ; 10(28): e2300989, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552005

RESUMO

Studies in recent years have highlighted an elaborate crosstalk between T cells and bone cells, suggesting that T cells may be alternative therapeutic targets for the maintenance of bone homeostasis. Here, it is reported that systemic administration of low-dose staphylococcal enterotoxin C2 (SEC2) 2M-118, a form of mutant superantigen, dramatically alleviates ovariectomy (OVX)-induced bone loss via modulating T cells. Specially, SEC2 2M-118 treatment increases trabecular bone mass significantly via promoting bone formation in OVX mice. These beneficial effects are largely diminished in T-cell-deficient nude mice and can be rescued by T-cell reconstruction. Neutralizing assays determine interferon gamma (IFN-γ) as the key factor that mediates the beneficial effects of SEC2 2M-118 on bone. Mechanistic studies demonstrate that IFN-γ stimulates Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling, leading to enhanced production of nitric oxide, which further activates p38 mitogen-activated protein kinase (MAPK) and Runt-related transcription factor 2 (Runx2) signaling and promotes osteogenic differentiation. IFN-γ also directly inhibits osteoclast differentiation, but this effect is counteracted by proabsorptive factors tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) secreted from IFN-γ-stimulated macrophages. Taken together, this work provides clues for developing innovative approaches which target T cells for the prevention and treatment of osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA