Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Sci ; 133(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938686

RESUMO

The current model for spindle positioning requires attachment of the microtubule (MT) motor cytoplasmic dynein to the cell cortex, where it generates pulling force on astral MTs to effect spindle displacement. How dynein is anchored by cortical attachment machinery to generate large spindle-pulling forces remains unclear. Here, we show that cortical clustering of Num1, the yeast dynein attachment molecule, is limited by its assembly factor Mdm36. Overexpression of Mdm36 results in an overall enhancement of Num1 clustering but reveals a population of dim Num1 clusters that mediate dynein anchoring at the cell cortex. Direct imaging shows that bud-localized, dim Num1 clusters containing around only six Num1 molecules mediate dynein-dependent spindle pulling via a lateral MT sliding mechanism. Mutations affecting Num1 clustering interfere with mitochondrial tethering but do not interfere with the dynein-based spindle-pulling function of Num1. We propose that formation of small ensembles of attachment molecules is sufficient for dynein anchorage and cortical generation of large spindle-pulling forces.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
2.
Traffic ; 16(7): 773-786, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25711127

RESUMO

The ability to fluorescently label microtubules in live cells has enabled numerous studies of motile and mitotic processes. Such studies are particularly useful in budding yeast owing to the ease with which they can be genetically manipulated and imaged by live cell fluorescence microscopy. Because of problems associated with fusing genes encoding fluorescent proteins (FPs) to the native α-tubulin (TUB1) gene, the FP-Tub1 fusion is generally integrated into the genome such that the endogenous TUB1 locus is left intact. Although such modifications have no apparent consequences on cell viability, it is unknown if these genome-integrated FP-tubulin fusions negatively affect microtubule functions. Thus, a simple, economical and highly sensitive assay of microtubule function is required. Furthermore, the current plasmids available for generation of FP-Tub1 fusions have not kept pace with the development of improved FPs. Here, we have developed a simple and sensitive assay of microtubule function that is sufficient to identify microtubule defects that were not apparent by fluorescence microscopy or cell growth assays. Using results obtained from this assay, we have engineered a new family of 30 FP-Tub1 plasmids that use various improved FPs and numerous selectable markers that upon genome integration have no apparent defect on microtubule function.


Assuntos
Proteínas Luminescentes/genética , Microtúbulos/metabolismo , Plasmídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Vetores Genéticos/genética , Proteínas Luminescentes/metabolismo , Microtúbulos/genética , Engenharia de Proteínas/métodos , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Microbiol ; 94(3): 486-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25213368

RESUMO

Aspergillus nidulans is an ideal model to study nuclear migration and intracellular transport by dynein and kinesin owing to its long neuron-like hyphae, conserved transport mechanisms, and powerful genetics. In this organism, as in other filamentous fungi, microtubules have been implicated in patterning cell shape through polarized tip growth - the hallmark mode of growth that generates the elongated hyphae. Exactly how microtubules regulate tip growth is incompletely understood and remains a fascinating question for various cell types, such as pollen tubes and root hairs. Zeng et al. (2014) describe important new findings in A. nidulans regarding the role of EBA, the master regulator of microtubule plus end-tracking proteins, in specifying microtubule dynamics required for directional tip growth at the hyphal tip.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo
4.
Exp Cell Res ; 318(12): 1400-6, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542856

RESUMO

Cortical force generators play a central role in the orientation and positioning of the mitotic spindle. In higher eukaryotes, asymmetrically localized cortical polarity determinants recruit or activate such force generators, which, through interactions with astral microtubules, position the mitotic spindle at the future site of cytokinesis. Recent studies in budding yeast have shown that, rather than the cell cortex, the astral microtubules themselves may provide polarity cues that are needed for asymmetric pulling on the mitotic spindle. Such asymmetry has been shown to be required for proper spindle positioning, and consequently faithful and accurate chromosome segregation. In this review, we highlight results that have shed light on spindle orientation in this classical model of asymmetric cell division, and review findings that may shed light on similar processes in higher eukaryotes.


Assuntos
Microtúbulos/fisiologia , Saccharomycetales/genética , Saccharomycetales/metabolismo , Fuso Acromático/fisiologia , Animais , Divisão Celular Assimétrica/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Dineínas/genética , Dineínas/metabolismo , Dineínas/fisiologia , Humanos , Microtúbulos/metabolismo , Microtúbulos/patologia , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fuso Acromático/metabolismo
5.
Nat Cell Biol ; 7(7): 686-90, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15965467

RESUMO

Dynein is a minus-end-directed microtubule motor with critical roles in mitosis, membrane transport and intracellular transport. Several proteins regulate dynein activity, including dynactin, LIS1 (refs 2, 3) and NudEL (NudE-like). Here, we identify a NUDEL homologue in budding yeast and name it Ndl1. The ndl1delta null mutant shows decreased targeting of dynein to microtubule plus ends, an essential element of the model for dynein function. We find that Ndl1 regulates dynein targeting through LIS1, with which it interacts biochemically, but not through CLIP170, another plus-end protein involved in dynein targeting. Ndl1 is found at far fewer microtubule ends than are LIS1 and dynein. However, when Ndl1 is present at a plus end, the molar amount of Ndl1 approaches that of LIS1 and dynein. We propose a model in which Ndl1 binds transiently to the plus end to promote targeting of LIS1, which cooperatively recruits dynein.


Assuntos
Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/genética , Dineínas/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica/genética , Imunoprecipitação , Cinesinas , Microscopia de Fluorescência , Proteínas dos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/genética , Mitose/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares , Mutação , Proteínas Nucleares/genética , Fenótipo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/fisiologia , Transformação Genética
6.
Curr Opin Cell Biol ; 15(1): 23-30, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12517700

RESUMO

The Arp2/3 complex is necessary for nucleating the formation of branched networks of actin filaments at the cell cortex, and an increasing number of proteins able to activate the Arp2/3 complex have been described. The Wiskott-Aldrich syndrome protein (WASP) family and cortactin comprise the large majority of the known activators. WASPs bind to Arp2/3 via an acidic (A) domain, and a WH2 domain appears to bring an actin monomer to Arp2/3, promoting the nucleation of the new filament. Cortactin also binds the Arp2/3 complex via an A domain; however, it also binds to actin filaments, which helps activate the Arp2/3 complex and stabilise the newly created branches between the filaments.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Eucarióticas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas/metabolismo , Citoesqueleto de Actina/ultraestrutura , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Animais , Cortactina , Células Eucarióticas/ultraestrutura , Humanos , Transdução de Sinais/fisiologia , Proteína da Síndrome de Wiskott-Aldrich
7.
Methods ; 51(2): 193-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20085816

RESUMO

To ensure that genetic material is accurately segregated during mitosis, eukaryotic cells assemble a mitotic spindle, a dynamic structure composed of microtubules and associated regulatory, structural and motor proteins. Although much has been learned in the past decades from direct observations of live cells expressing fluorescently tagged spindle proteins, a complete understanding of spindle assembly requires a detailed analysis of the dynamic behavior of component parts. Proteins tagged with conventional fluorophores, however, make such an analysis difficult because all of the molecules are uniformly fluorescent. To alleviate this problem, we have tagged proteins with a photoactivatable variant of GFP (PA-GFP), thereby allowing one to follow the behavior of a subset of tagged molecules in the cell. Here, we describe methods to tag and express proteins with PA-GFP, locally photoactivate the recombinant protein and record the dynamic behavior of the photoactivated molecules in live cells. We provide examples of photoactivable proteins in mammalian and yeast cells to illustrate the power of this approach to examine the dynamics of spindle formation and function in diverse cells.


Assuntos
Proteínas de Fluorescência Verde , Imagem Molecular , Fuso Acromático , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Luz , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
8.
J Cell Biol ; 168(2): 201-7, 2005 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-15642746

RESUMO

During mitosis in budding yeast, dynein moves the mitotic spindle into the mother-bud neck. We have proposed an offloading model to explain how dynein works. Dynein is targeted to the dynamic plus end of a cytoplasmic microtubule, offloads to the cortex, becomes anchored and activated, and then pulls on the microtubule. Here, we perform functional studies of dynein intermediate chain (IC) and light intermediate chain (LIC). IC/Pac11 and LIC/Dyn3 are both essential for dynein function, similar to the heavy chain (HC/Dyn1). IC and LIC are targeted to the distal plus ends of dynamic cytoplasmic microtubules, as is HC, and their targeting depends on HC. Targeting of HC to the plus end depends on IC, but not LIC. IC also localizes as stationary dots at the cell cortex, the presumed result of offloading in our model, as does HC, but not LIC. Localization of HC to cortical dots depends on both IC and LIC. Thus, the IC and LIC accessory chains have different but essential roles in dynein function, providing new insight into the offloading model.


Assuntos
Dineínas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Western Blotting , Dineínas/química , Dineínas/genética , Imunoprecipitação , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitose/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/fisiologia , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
J Cell Biol ; 160(3): 355-64, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12566428

RESUMO

During mitosis in Saccharomyces cerevisiae, the mitotic spindle moves into the mother-bud neck via dynein-dependent sliding of cytoplasmic microtubules along the cortex of the bud. Here we show that Pac1, the yeast homologue of the human lissencephaly protein LIS1, plays a key role in this process. First, genetic interactions placed Pac1 in the dynein/dynactin pathway. Second, cells lacking Pac1 failed to display microtubule sliding in the bud, resulting in defective mitotic spindle movement and nuclear segregation. Third, Pac1 localized to the plus ends (distal tips) of cytoplasmic microtubules in the bud. This localization did not depend on the dynein heavy chain Dyn1. Moreover, the Pac1 fluorescence intensity at the microtubule end was enhanced in cells lacking dynactin or the cortical attachment molecule Num1. Fourth, dynein heavy chain Dyn1 also localized to the tips of cytoplasmic microtubules in wild-type cells. Dynein localization required Pac1 and, like Pac1, was enhanced in cells lacking the dynactin component Arp1 or the cortical attachment molecule Num1. Our results suggest that Pac1 targets dynein to microtubule tips, which is necessary for sliding of microtubules along the bud cortex. Dynein must remain inactive until microtubule ends interact with the bud cortex, at which time dynein and Pac1 appear to be offloaded from the microtubule to the cortex.


Assuntos
Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Endorribonucleases , Proteínas Fúngicas/metabolismo , Mitose/fisiologia , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Núcleo Celular/ultraestrutura , Células Cultivadas , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Complexo Dinactina , Dineínas/genética , Dineínas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Mutação/fisiologia , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
10.
Yeast ; 25(9): 651-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18727145

RESUMO

Yeast cell biologists use a variety of fluorescent protein tags for determining protein localization and for measuring protein dynamics using fluorescence recovery after photobleaching (FRAP). Although many modern fluorescent proteins, such as those with photoactivatable and photoconvertible characteristics, have been developed, none has been exploited for studies in budding yeast. We describe here the construction of yeast-tagging vectors containing photoactivatable green fluorescent protein (PA-GFP) for analysis of protein behaviour. We tagged two yeast proteins, Erg6p and Num1p, with PA-GFP and demonstrated specific photoactivation of the fusion proteins in live cells. Fluorescence intensity measurements showed that a short 5 s exposure to 413 nm light is sufficient to produce the maximum level of activated GFP fluorescence. Local photoactivation of cortical Num1p-PA-GFP showed movement of the marked proteins, providing new insights into the behaviour of Num1p at the cell cortex. Since photoactivation can be achieved using standard mercury arc illumination, the PA-GFP tag represents a convenient and economical way to determine protein dynamics in the cell. Thus, the tagging modules should facilitate protein-tracking studies in a wide variety of cell biological processes in yeast.


Assuntos
Proteínas de Ligação ao Cálcio/análise , Proteínas de Fluorescência Verde/análise , Metiltransferases/análise , Plasmídeos/genética , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Clonagem Molecular , Proteínas do Citoesqueleto , DNA Fúngico/química , DNA Fúngico/genética , Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Microscopia Confocal , Reação em Cadeia da Polimerase , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Bio Protoc ; 8(23)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733975

RESUMO

In this protocol, we describe a simple microscopy-based method to assess the interaction of a microtubule-associated protein (MAP) with microtubules. The interaction between MAP and microtubules is typically assessed by a co-sedimentation assay, which measures the amount of MAP that co-pellets with microtubules by centrifugation, followed by SDS-PAGE analysis of the supernatant and pellet fractions. However, MAPs that form large oligomers tend to pellet on their own during the centrifugation step, making it difficult to assess co-sedimentation. Here we describe a microscopy-based assay that measures microtubule binding by direct visualization using fluorescently-labeled MAP, solving the limitations of the co-sedimentation assay. Additionally, we recently reported quantification of microtubule bundling by measuring the thickness of individual microtubule structures observed in the microscopy-based assay, making the protocol more advantageous than the traditional microtubule co-pelleting assay.

12.
Biophys Rev ; 10(6): 1631-1636, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30402673

RESUMO

In both animals and fungi, spindle positioning is dependent upon pulling forces generated by cortically anchored dynein. In animals, cortical anchoring is accomplished by a ternary complex containing the dynein-binding protein NuMA and its cortical attachment machinery. The same function is accomplished by Num1 in budding yeast. While not homologous in primary sequence, NuMA and Num1 appear to share striking similarities in their mechanism of function. Here, we discuss evidence supporting that Num1 in fungi is a functional homolog of NuMA due to their similarity in domain organization and role in the generation of cortical pulling forces.

13.
Elife ; 72018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30084355

RESUMO

Cortical dynein generates pulling forces via microtubule (MT) end capture-shrinkage and lateral MT sliding mechanisms. In Saccharomyces cerevisiae, the dynein attachment molecule Num1 interacts with endoplasmic reticulum (ER) and mitochondria to facilitate spindle positioning across the mother-bud neck, but direct evidence for how these cortical contacts regulate dynein-dependent pulling forces is lacking. We show that loss of Scs2/Scs22, ER tethering proteins, resulted in defective Num1 distribution and loss of dynein-dependent MT sliding, the hallmark of dynein function. Cells lacking Scs2/Scs22 performed spindle positioning via MT end capture-shrinkage mechanism, requiring dynein anchorage to an ER- and mitochondria-independent population of Num1, dynein motor activity, and CAP-Gly domain of dynactin Nip100/p150Glued subunit. Additionally, a CAAX-targeted Num1 rescued loss of lateral patches and MT sliding in the absence of Scs2/Scs22. These results reveal distinct populations of Num1 and underline the importance of their spatial distribution as a critical factor for regulating dynein pulling force.


Assuntos
Proteínas do Citoesqueleto/genética , Complexo Dinactina/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Retículo Endoplasmático/genética , Microtúbulos , Mitocôndrias/genética , Saccharomyces cerevisiae/genética
14.
Curr Biol ; 12(15): 1270-8, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12176354

RESUMO

BACKGROUND: Dynamic actin assembly is required for diverse cellular processes and often involves activation of Arp2/3 complex. Cortactin and N-WASp activate Arp2/3 complex, alone or in concert. Both cortactin and N-WASp contain an acidic (A) domain that is required for Arp2/3 complex binding. RESULTS: We investigated how cortactin and the constitutively active VCA domain of N-WASp interact with Arp2/3 complex. Structural studies showed that cortactin is a thin, elongated monomer. Chemical crosslinking studies demonstrated selective interaction of the Arp2/3 binding NTA domain of cortactin (cortactin NTA) with the Arp3 subunit and VCA with Arp3, Arp2, and ARPC1/p40. Cortactin NTA and VCA crosslinking to the Arp3 subunit were mutually exclusive; however, cortactin NTA did not inhibit VCA crosslinking to Arp2 or ARPC1/p40, nor did it inhibit activation of Arp2/3 complex by VCA. We conducted an experiment in which a saturating concentration of cortactin NTA modestly lowered the binding affinity of VCA for Arp2/3; the results of this experiment provided further evidence for ternary complex formation. Consistent with a common binding site on Arp3, a saturating concentration of VCA abolished binding of cortactin to Arp2/3 complex. CONCLUSIONS: Under certain circumstances, cortactin and N-WASp can bind simultaneously to Arp2/3 complex, accounting for their synergy in activation of actin assembly. The interaction of cortactin NTA with Arp2/3 complex does not inhibit Arp2/3 activation by N-WASp, despite competition for a common binding site located on the Arp3 subunit. These results suggest a model in which cortactin may bridge Arp2/3 complex to actin filaments via Arp3 and N-WASp activates Arp2/3 complex by binding Arp2 and/or ARPC1/p40.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteína 2 Relacionada a Actina , Proteína 3 Relacionada a Actina , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/metabolismo , Bovinos , Galinhas , Cortactina , Proteínas do Citoesqueleto/química , Cinética , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Timo/metabolismo , Triptofano , Síndrome de Wiskott-Aldrich , Proteína Neuronal da Síndrome de Wiskott-Aldrich
15.
J Cell Biol ; 216(9): 2759-2775, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28794129

RESUMO

Dynein mediates spindle positioning in budding yeast by pulling on astral microtubules (MTs) from the cell cortex. The MT-associated protein She1 regulates dynein activity along astral MTs and directs spindle movements toward the bud cell. In addition to localizing to astral MTs, She1 also targets to the spindle, but its role on the spindle remains unknown. Using function-separating alleles, live-cell spindle assays, and in vitro biochemical analyses, we show that She1 is required for the maintenance of metaphase spindle stability. She1 binds and cross-links MTs via a C-terminal MT-binding site. She1 can also self-assemble into ring-shaped oligomers. In cells, She1 stabilizes interpolar MTs, preventing spindle deformations during movement, and we show that this activity is regulated by Ipl1/Aurora B phosphorylation during cell cycle progression. Our data reveal how She1 ensures spindle integrity during spindle movement across the bud neck and suggest a potential link between regulation of spindle integrity and dynein pathway activity.

16.
J Cell Biol ; 209(3): 329-37, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25963816

RESUMO

Many aspects of cytoskeletal assembly and dynamics can be recapitulated in vitro; yet, how the cytoskeleton integrates signals in vivo across cellular membranes is far less understood. Recent work has demonstrated that the membrane alone, or through membrane-associated proteins, can effect dynamic changes to the cytoskeleton, thereby impacting cell physiology. Having identified mechanistic links between membranes and the actin, microtubule, and septin cytoskeletons, these studies highlight the membrane's central role in coordinating these cytoskeletal systems to carry out essential processes, such as endocytosis, spindle positioning, and cellular compartmentalization.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Microtúbulos/metabolismo , Septinas/metabolismo , Fuso Acromático/metabolismo , Animais , Humanos
17.
Curr Biol ; 23(13): R563-5, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23845243

RESUMO

The minus-end directed microtubule motor protein cytoplasmic dynein contributes to many aspects of cell division and it is generally believed that these mitotic functions require the dynein activator and processivity factor, dynactin. New research now shows that dynein accomplishes many of its mitotic functions without dynactin.


Assuntos
Dineínas/metabolismo , Mitose , Humanos
18.
Curr Biol ; 22(23): 2221-30, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23142046

RESUMO

BACKGROUND: Cytoplasmic dynein motility along microtubules is critical for diverse cellular processes ranging from vesicular transport to nuclear envelope breakdown to mitotic spindle alignment. In yeast, we have proposed a regulated-offloading model to explain how dynein motility drives microtubule sliding along the cortex, powering transport of the nucleus into the mother-bud neck [1, 2]: the dynein regulator She1 limits dynein offloading by gating the recruitment of dynactin to the astral microtubule plus end, a prerequisite for offloading to the cortex. However, whether She1 subsequently affects cortically anchored dynein activity during microtubule sliding is unclear. RESULTS: Using single-molecule motility assays, we show that She1 strongly inhibits dynein movement along microtubules, acting directly on the motor domain in a manner independent of dynactin. She1 has no effect on the motility of either Kip2, a kinesin that utilizes the same microtubule track as dynein, or human kinesin-1, demonstrating the specificity of She1 for the dynein motor. At single-molecule resolution, She1 binds tightly to and exhibits diffusional behavior along microtubules. Diffusive She1 collides with and pauses motile dynein motors, prolonging their attachment to the microtubule. Furthermore, Aurora B/Ipl1 directly phosphorylates She1, and this modification appears to enhance the diffusive behavior of She1 along microtubules and its potency against dynein. In cells, She1 dampens productive microtubule-cortex interactions specifically in the mother compartment, polarizing spindle movements toward the bud cell. CONCLUSIONS: Our data reveal how inhibitory microtubule-associated proteins selectively regulate motor activity to achieve unidirectional nuclear transport and demonstrate a direct link between cell-cycle machinery and dynein pathway activity.


Assuntos
Dineínas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
J Cell Biol ; 196(6): 743-56, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22431751

RESUMO

During mitosis in budding yeast, cortically anchored dynein generates pulling forces on astral microtubules to position the mitotic spindle across the mother-bud neck. The attachment molecule Num1 is required for dynein anchoring at the cell membrane, but how Num1 assembles into stationary cortical patches and interacts with dynein is unknown. We show that an N-terminal Bin/Amphiphysin/Rvs (BAR)-like domain in Num1 mediates the assembly of morphologically distinct patches and its interaction with dynein for spindle translocation into the bud. We name this domain patch assembly domain (PA; residues 1-303), as it was both necessary and sufficient for the formation of functional dynein-anchoring patches when it was attached to a pleckstrin homology domain or a CAAX motif. Distinct point mutations targeting the predicted BAR-like PA domain differentially disrupted patch assembly, dynein anchoring, and mitochondrial attachment functions of Num1. We also show that the PA domain is an elongated dimer and discuss the mechanism by which it drives patch assembly.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dineínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/fisiologia , Proteínas do Citoesqueleto/genética , Dineínas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutação , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Biol Cell ; 23(17): 3380-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22809624

RESUMO

In cultured mammalian cells, how dynein/dynactin contributes to spindle positioning is poorly understood. To assess the role of cortical dynein/dynactin in this process, we generated mammalian cell lines expressing localization and affinity purification (LAP)-tagged dynein/dynactin subunits from bacterial artificial chromosomes and observed asymmetric cortical localization of dynein and dynactin during mitosis. In cells with asymmetrically positioned spindles, dynein and dynactin were both enriched at the cortex distal to the spindle. NuMA, an upstream targeting factor, localized asymmetrically along the cell cortex in a manner similar to dynein and dynactin. During spindle motion toward the distal cortex, dynein and dynactin were locally diminished and subsequently enriched at the new distal cortex. At anaphase onset, we observed a transient increase in cortical dynein, followed by a reduction in telophase. Spindle motion frequently resulted in cells entering anaphase with an asymmetrically positioned spindle. These cells gave rise to symmetric daughter cells by dynein-dependent differential spindle pole motion in anaphase. Our results demonstrate that cortical dynein and dynactin dynamically associate with the cell cortex in a cell cycle-regulated manner and are required to correct spindle mispositioning in LLC-Pk1 epithelial cells.


Assuntos
Anáfase/fisiologia , Divisão Celular/fisiologia , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Complexo Dinactina , Mitose , Proteínas Associadas à Matriz Nuclear/metabolismo , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA