Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Biol ; 20(1): 164, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850762

RESUMO

BACKGROUND: Mitochondria have an essential role in regulating metabolism and integrate environmental and physiological signals to affect processes such as cellular bioenergetics and response to stress. In the metabolically active skeletal muscle, mitochondrial biogenesis is one important component contributing to a broad set of mitochondrial adaptations occurring in response to signals, which converge on the biogenesis transcriptional regulator peroxisome proliferator-activated receptor coactivator 1-alpha (PGC-1α), and is central to the beneficial effects of exercise in skeletal muscle. We investigated the role of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1), which interacts with PGC-1α in regulating transcriptional responses to exercise in skeletal muscle. RESULTS: In human skeletal muscle, TUG1 gene expression was upregulated post-exercise and was also positively correlated with the increase in PGC-1α gene expression (PPARGC1A). Tug1 knockdown (KD) in differentiating mouse myotubes led to decreased Ppargc1a gene expression, impaired mitochondrial respiration and morphology, and enhanced myosin heavy chain slow isoform protein expression. In response to a Ca2+-mediated stimulus, Tug1 KD prevented an increase in Ppargc1a expression. RNA sequencing revealed that Tug1 KD impacted mitochondrial Ca2+ transport genes and several downstream PGC-1α targets. Finally, Tug1 KD modulated the expression of ~300 genes that were upregulated in response to an in vitro model of exercise in myotubes, including genes involved in regulating myogenesis. CONCLUSIONS: We found that TUG1 is upregulated in human skeletal muscle after a single session of exercise, and mechanistically, Tug1 regulates transcriptional networks associated with mitochondrial calcium handling, muscle differentiation and myogenesis. These data demonstrate that lncRNA Tug1 exerts regulation over fundamental aspects of skeletal muscle biology and response to exercise stimuli.


Assuntos
RNA Longo não Codificante/genética , Animais , Metabolismo Energético , Humanos , Camundongos , Mitocôndrias/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Longo não Codificante/metabolismo
2.
BMC Infect Dis ; 21(1): 671, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243714

RESUMO

BACKGROUND: Pseudomonas aeruginosa bacteraemia (PAB) is associated with high mortality. The benefits of infectious diseases consultation (IDC) has been demonstrated in Staphylococcal aureus bacteraemia and other complex infections. Impact of IDC in PAB is unclear. This study aimed to evaluate the impact of IDC on the management and outcomes in patients with PAB. METHODS: This is a retrospective cohort single-centre study from 1 November 2006 to 29 May 2019, in all adult patients admitted with first episode of PAB. Data collected included demographics, clinical management and outcomes for PAB and whether IDC occurred. In addition, 29 Pseudomonas aeruginosa (PA) stored isolates were available for Illumina whole genome sequencing to investigate if pathogen factors contributed to the mortality. RESULTS: A total of 128 cases of PAB were identified, 71% received IDC. Patients who received IDC were less likely to receive inappropriate duration of antibiotic therapy (4.4%; vs 67.6%; p < 0.01), more likely to be de-escalated to oral antibiotic in a timely manner (87.9% vs 40.5%; p < 0.01), undergo removal of infected catheter (27.5% vs 13.5%; p = 0.049) and undergo surgical intervention (20.9% vs 5.4%, p = 0.023) for source control. The overall 30-day all-cause mortality rate was 24.2% and was significantly higher in the no IDC group in both unadjusted (56.8% vs 11.0%, odds ratio [OR] = 10.63, p < 0.001) and adjusted analysis (adjusted OR = 7.84; 95% confidence interval, 2.95-20.86). The genotypic analysis did not reveal any PA genetic features associated with increased mortality between IDC versus no IDC groups. CONCLUSION: Patients who received IDC for PAB had lower 30-day mortality, better source control and management was more compliant with guidelines. Further prospective studies are necessary to determine if these results can be validated in other settings.


Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Encaminhamento e Consulta , Adulto , Idoso , Bacteriemia/mortalidade , Bacteriemia/cirurgia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Estudos Prospectivos , Infecções por Pseudomonas/mortalidade , Infecções por Pseudomonas/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
3.
Mol Ecol ; 27(4): 898-918, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334409

RESUMO

Diversifying selection between populations that inhabit different environments can promote lineage divergence within species and ultimately drive speciation. The mitochondrial genome (mitogenome) encodes essential proteins of the oxidative phosphorylation (OXPHOS) system and can be a strong target for climate-driven selection (i.e., associated with inhabiting different climates). We investigated whether Pleistocene climate changes drove mitochondrial selection and evolution within Australian birds. First, using phylogeographic analyses of the mitochondrial ND2 gene for 17 songbird species, we identified mitochondrial clades (mitolineages). Second, using distance-based redundancy analyses, we tested whether climate predicts variation in intraspecific genetic divergence beyond that explained by geographic distances and geographic position. Third, we analysed 41 complete mitogenome sequences representing each mitolineage of 17 species using codon models in a phylogenetic framework and a biochemical approach to identify signals of selection on OXPHOS protein-coding genes and test for parallel selection in mitolineages of different species existing in similar climates. Of 17 species examined, 13 had multiple mitolineages (range: 2-6). Climate was a significant predictor of mitochondrial variation in eight species. At least two amino acid replacements in OXPHOS complex I could have evolved under positive selection in specific mitolineages of two species. Protein homology modelling showed one of these to be in the loop region of the ND6 protein channel and the other in the functionally critical helix HL region of ND5. These findings call for direct tests of the functional and evolutionary significance of mitochondrial protein candidates for climate-associated selection.


Assuntos
Clima , Mitocôndrias/genética , Seleção Genética , Aves Canoras/genética , Aminoácidos/genética , Animais , Austrália , Teorema de Bayes , Códon/genética , Genes Mitocondriais , NADH Desidrogenase , Fases de Leitura Aberta/genética , Filogenia , Filogeografia , Especificidade da Espécie , Homologia Estrutural de Proteína
4.
Mol Phylogenet Evol ; 118: 88-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966124

RESUMO

To further understand the evolutionary history and mitogenomic features of Australia's highly distinctive freshwater crayfish fauna, we utilized a recently described rapid mitogenome sequencing pipeline to generate 24 new crayfish mitogenomes including a diversity of burrowing crayfish species and the first for Astacopsis gouldi, the world's largest freshwater invertebrate. Whole mitogenome-based phylogeny estimates using both Bayesian and Maximum Likelihood methods substantially strengthen existing hypotheses for systematic relationships among Australian freshwater crayfish with evidence of pervasive diversifying selection and accelerated mitochondrial substitution rate among the members of the clade representing strongly burrowing crayfish that may reflect selection pressures for increased energy requirement for adaptation to terrestrial environment and a burrowing lifestyle. Further, gene rearrangements are prevalent in the burrowing crayfish mitogenomes involving both tRNA and protein coding genes. In addition, duplicated control regions were observed in two closely related Engaeus species, together with evidence for concerted evolution. This study significantly adds to the understanding of Australian freshwater crayfish evolutionary relationships and suggests a link between mitogenome evolution and adaptation to terrestrial environments and a burrowing lifestyle in freshwater crayfish.


Assuntos
Astacoidea/classificação , DNA Mitocondrial/genética , Evolução Molecular , Animais , Astacoidea/genética , Austrália , Teorema de Bayes , Códon , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/metabolismo , Água Doce , Ordem dos Genes , Funções Verossimilhança , Filogenia , Análise de Sequência de DNA
5.
Mol Phylogenet Evol ; 127: 320-331, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29800651

RESUMO

The infraorder Anomura consists of a morphologically and ecologically heterogeneous group of decapod crustaceans, and has attracted interest from taxonomists for decades attempting to find some order out of the seemingly chaotic diversity within the group. Species-level diversity within the Anomura runs the gamut from the "hairy" spindly-legged yeti crab found in deep-sea hydrothermal vent environments to the largest known terrestrial invertebrate, the robust coconut or robber crab. Owing to a well-developed capacity for parallel evolution, as evidenced by the occurrence of multiple independent carcinization events, Anomura has long tested the patience and skill of both taxonomists attempting to find order, and phylogeneticists trying to establish stable hypotheses of evolutionary inter-relationships. In this study, we performed genome skimming to recover the mitogenome sequences of 12 anomuran species including the world's largest extant invertebrate, the robber crab (Birgus latro), thereby over doubling these resources for this group, together with 8 new brachyuran mitogenomes. Maximum-likelihood (ML) and Bayesian-inferred (BI) phylogenetic reconstructions based on amino acid sequences from mitogenome protein-coding genes provided strong support for the monophyly of the Anomura and Brachyura and their sister relationship, consistent with previous studies. The majority of relationships within families were supported and were largely consistent with current taxonomic classifications, whereas many relationships at higher taxonomic levels were unresolved. Nevertheless, we have strong support for a polyphyletic Paguroidea and recovered a well-supported clade of a subset of paguroids (Diogenidae + Coenobitidae) basal to all other anomurans, though this requires further testing with greater taxonomic sampling. We also introduce a new feature to the MitoPhAST bioinformatics pipeline (https://github.com/mht85/MitoPhAST) that enables the extraction of mitochondrial gene order (MGO) information directly from GenBank files and clusters groups based on common MGOs. Using this tool, we compared MGOs across the Anomura and Brachyura, identifying Anomura as a taxonomic "hot spot" with high variability in MGOs among congeneric species from multiple families while noting the broad association of highly-rearranged MGOs with several anomuran lineages inhabiting extreme niches. We also demonstrate the value of MGOs as a source of novel synapomorphies for independently reinforcing tree-based relationships and for shedding light on relationships among challenging groups such as the Aegloidea and Lomisoidea that were unresolved in phylogenetic reconstructions. Overall, this study contributes a substantial amount of new genetic material for Anomura and attempts to further resolve anomuran evolutionary relationships where possible based on a combination of sequence and MGO information. The new feature in MitoPhAST adds to the relatively limited number of bioinformatics tools available for MGO analyses, which can be utilized widely across animal groups.


Assuntos
Anomuros/classificação , Anomuros/genética , Ordem dos Genes , Rearranjo Gênico , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Braquiúros/classificação , Braquiúros/genética , Genes Mitocondriais , Genoma Mitocondrial
6.
Mol Biol Rep ; 43(5): 391-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26922181

RESUMO

The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy-Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7-36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior to microsatellite development. The rapid identification and validation of microsatellite loci using next-generation sequencing technology warrant its integration into future microsatellite loci development for key aquaculture species in Vietnam and more generally, aquaculture countries in the South East Asia region.


Assuntos
Bivalves/genética , Repetições de Microssatélites , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Vietnã
7.
Antibiotics (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978350

RESUMO

Whole genome sequencing (WGS) provides insights into the evolution of antimicrobial resistance, an urgent global health threat. Using WGS, we observe evolutionary adaptation of a Pseudomonas aeruginosa strain within an immunocompromised patient undergoing antibiotic therapy. Two blood isolates (EA-86 and EA-87) from the patient evolved separate adaptations for antibiotic resistance, while sharing common adaptive mutations for host immune evasion. In EA-86, a silencing mutation in the antibiotic efflux pump repressor, NfxB, increased antibiotic resistance, while in EA-87, a similar mutation was seen in the antibiotic efflux pump repressor mexR. The number of genomic variants between the two isolates give a divergence time estimate of the order of 1000 generations. This time is sufficient for a bacterial lineage to have evolved an SNP in every position in the genome and been fixed if advantageous. This demonstrates the evolutionary adaptive power accessible to bacteria and the timescale for a brute-force functional survey of the SNP fitness landscape.

8.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662366

RESUMO

We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.

9.
Mol Ecol Resour ; 22(4): 1639-1655, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34863023

RESUMO

Sex-specific ecology has management implications, but rapid sex-chromosome turnover in fishes hinders sex-marker development for monomorphic species. We used annotated genomes and reduced-representation sequencing data for two Australian percichthyids, Macquarie perch Macquaria australasica and golden perch M. ambigua, and whole genome resequencing for 50 Macquarie perch of each sex, to identify sex-linked loci and develop an affordable sexing assay. In silico pool-seq tests of 1,492,004 Macquarie perch SNPs revealed that a 275-kb scaffold was enriched for gametologous loci. Within this scaffold, 22 loci were sex-linked in a predominantly XY system, with females being homozygous for the X-linked allele at all 22, and males having the Y-linked allele at >7. Seven XY-gametologous loci (all males, but no females, are heterozygous or homozygous for the male-specific allele) were within a 146-bp region. A PCR-RFLP sexing assay targeting one Y-linked SNP, tested in 66 known-sex Macquarie perch and two of each sex of three confamilial species, plus amplicon sequencing of 400 bp encompassing the 146-bp region, revealed that the few sex-linked positions differ between species and between Macquarie perch populations. This indicates sex-chromosome lability in Percichthyidae, supported by nonhomologous scaffolds containing sex-linked loci for Macquarie- and golden perches. The present resources facilitate genomic research in Percichthyidae, including formulation of hypotheses about candidate genes of interest such as transcription factor SOX1b that occurs in the 275-kb scaffold ~38 kb downstream of the 146-bp region containing seven XY-gametologous loci. Sex-linked markers will be useful for determining genetic sex in some populations and studying sex chromosome turnover.


Assuntos
Percas , Perciformes , Animais , Austrália , Feminino , Água Doce , Masculino , Percas/genética , Perciformes/genética , Cromossomos Sexuais/genética
10.
Transl Res ; 247: 79-98, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35470009

RESUMO

In this study, we define and validate a state of postoperative systemic inflammatory dysregulation (PSID) based on postoperative phenotypic extremes of plasma C-reactive protein concentration following major abdominal surgery. PSID manifested clinically with significantly higher rates of sepsis, complications, longer hospital stays and poorer short, and long-term outcomes. We hypothesized that PSID will be associated with, and potentially predicted by, altered patterns of genome-wide peripheral blood mononuclear cell differential DNA methylation and gene expression. We identified altered DNA methylation and differential gene expression in specific immune and metabolic pathways during PSID. Our findings suggest that dysregulation results in, or from, dramatic changes in differential DNA methylation and highlights potential targets for early detection and treatment. The combination of altered DNA methylation and gene expression suggests that dysregulation is mediated at multiple levels within specific gene sets and hence, nonspecific anti-inflammatory treatments such as corticosteroids alone are unlikely to represent an effective therapeutic strategy.


Assuntos
Leucócitos Mononucleares , Transcriptoma , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Leucócitos Mononucleares/metabolismo
11.
Front Microbiol ; 12: 733631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552575

RESUMO

Cane toads (Rhinella marina) are notoriously successful invaders: from 101 individuals brought to Australia in 1935, poisonous toads now cover an area >1.2 million km2 with adverse effects on native fauna. Despite extensive research on the role of macroparasites in cane toad invasion, viral research is lagging. We compared viral prevalence and diversity between toads in their native range (French Guiana, n=25) and two introduced ranges: Australia (n=151) and Hawai'i (n=10) with a metatranscriptomic and metagenomic approach combined with PCR screening. Australian toads almost exclusively harbor one of seven viruses detected globally. Rhimavirus-A (Picornaviridae) exhibited low genetic diversity and likely actively infected 9% of sampled Australian toads extending across ~2,000km of Northern Australia and up to the current invasion front. In native range cane toads, we identified multiple phylogenetically distinct viruses (Iridoviridae, Picornaviridae, Papillomaviridae, and Nackedna-like virus). None of the same viruses was detected in both ranges, suggesting that Australian cane toads have largely escaped the viral infection experienced by their native range counterparts. The novel native range viruses described here are potential biocontrol agents, as Australian toads likely lack prior immunological exposure to these viruses. Overall, our evidence suggests that there may be differences between viruses infecting cane toads in their native vs. introduced ranges, which lays the groundwork for further studies on how these viruses have influenced the toads' invasion history.

12.
ACS Appl Bio Mater ; 4(7): 5435-5448, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006725

RESUMO

A practical, modular synthesis of targeted molecular imaging agents (TMIAs) containing near-infrared dyes for optical molecular imaging (OMI) or chelated metals for magnetic resonance imaging (MRI) and single-photon emission correlation tomography (SPECT) or positron emission tomography (PET) has been developed. In the method, imaging modules are formed early in the synthesis by attaching imaging agents to the side chain of protected lysines. These modules may be assembled to provide a given set of single- or dual-modal imaging agents, which may be conjugated in the last steps of the synthesis under mild conditions to linkers and targeting groups. A key discovery was the ability of a metal such as gadolinium, useful in MRI, to serve as a protecting group for the chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). It was further discovered that two lanthanide metals, La and Ce, can double as protecting groups and placeholder metals, which may be transmetalated under mild conditions by metals used for PET in the final step. The modular method enabled the synthesis of discrete targeted probes with two of the same or different dyes, two same or different metals, or mixtures of dyes and metals. The approach was exemplified by the synthesis of single- or dual-modal imaging modules for MRI-OMI, PET-OMI, and PET-MRI, followed by conjugation to the integrin-seeking peptide, c(RGDyK). For Gd modules, their efficacy for MRI was verified by measuring the NMR spin-lattice relaxivity. To validate functional imaging of TMIAs, dual-modal agents containing Cy5.5 were shown to target A549 cancer cells by confocal fluorescence microscopy.


Assuntos
Gadolínio , Tomografia Computadorizada por Raios X , Corantes Fluorescentes/química , Gadolínio/química , Metais/química , Imagem Molecular , Peptídeos
13.
Data Brief ; 31: 105861, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637481

RESUMO

Freshwater catfish of the genus Clarias, known as the airbreathing catfish, are widespread and important for food security through small scale inland fisheries and aquaculture. Limited genomic data are available for this important group of fishes. The bighead catfish (Clarias macrocephalus) is a commercial aquaculture species in southeast Asia used for aquaculture and threatened in its natural environment through habitat destruction, over-exploitation and competition from other introduced species of Clarias. Despite its commercial importance and threats to natural populations, public databases do not include any genomic data for C. macrocephalus. We present the first genomic data for the bighead catfish from Illumina sequencing. A total of 128 Gb of sequence data in paired-end 150 bp reads were assembled de novo, generating a final assembly of 883 Mbp contained in 27,833 scaffolds (N50 length: 80.8 kbp) with BUSCO completeness assessments of 96.3% and 87.6% based on metazoan and Actinopterygii ortholog datasets, respectively. Annotation of the genome predicted 21,124 gene sequences, which were assigned putative functions based on homology to existing protein sequences in public databases. Raw fastq reads and the final version of the genome assembly have been deposited in the NCBI (BioProject: PRJNA604477, WGS: JAAGKR000000000, SRA: SRR11188453). The complete C. macrocephalus mitochondrial genome was also recovered from the same sequence read dataset and is available on NCBI (accession: MT109097), representing the first mitogenome for this species. Lastly, we find an expansion of the mb and ora1 genes thought to be associated with adaptations to air-breathing and a semi-terrestrial life style in this genus of catfish.

14.
Mar Genomics ; 52: 100751, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32033920

RESUMO

World production of farmed crustaceans was 7.8 million tons in 2016. While only making up approximately 10% of world aquaculture production, crustaceans are generally high-value species and can earn significant export income for producing countries. Viet Nam is a major seafood producing country earning USD 7.3 billion in 2016 in export income with shrimp as a major commodity. However, there is a general lack of genomic resources available for shrimp species, which is challenging to obtain due to the need to deal with large repetitive genomes, which characterize many decapod crustaceans. The first tiger prawn (P. monodon) genome assembly was assembled in 2016 using the standard Illumina PCR-based pair-end reads and a computationally-efficient but relatively suboptimal assembler, SOAPdenovo v2. As a result, the current P. monodon draft genome is highly fragmented (> 2 million scaffolds with N50 length of <1000 bp), exhibiting only moderate genome completeness (< 35% BUSCO complete single-copy genes). We sought to improve upon the recently published P. monodon genome assembly and completeness by generating Illumina PCR-free pair-end sequencing reads to eliminate genomic gaps associated with PCR-bias and performing de novo assembly using the updated MaSurCA de novo assembler. Furthermore, we scaffolded the assembly with low coverage Nanopore long reads and several recently published deep Illumina transcriptome paired-end sequencing data, producing a final genome assembly of 1.6 Gbp (1,211,364 scaffolds; N50 length of 1982 bp) with an Arthropod BUSCO completeness of 96.8%. Compared to the previously published P. monodon genome assembly from China (NCBI Accession Code: NIUS01), this represents an almost 20% increase in the overall BUSCO genome completeness that now consists of more than 90% of Arthropod BUSCO single-copy genes. The revised P. monodon genome assembly (NCBI Accession Code: VIGR01) will be a valuable resource to support ongoing functional genomics and molecular-based breeding studies in Vietnam.


Assuntos
Genoma , Penaeidae/genética , Transcriptoma , Animais , Aquicultura , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
15.
Data Brief ; 25: 104058, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31211204

RESUMO

This data article presents the first complete mitochondrial genome (mitogenome) of an endangered slow loris subspecies, Nycticebus coucang insularis Robinson, 1917 from Tioman Island, Pahang. Once considered as extinct, an individual of the subspecies was captured alive from the island during the 2016 Biodiversity Inventory Programme as highlighted in the related research article entitled "Rediscovery of Nycticebus coucang insularis Robinson, 1917 (Primates: Lorisidae) at Tioman Island and its mitochondrial genetic assessment" Rovie-Ryan et al., 2018. Using MiSeq™ sequencing system, the entire mitogenome recovered is 16,765 bp in length, made up of 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region. The mitogenome has been deposited at DDBJ/EMBL/GenBank under the accession number NC_040292.1/MG515246.

16.
Mitochondrial DNA B Resour ; 4(2): 2535-2536, 2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-33365614

RESUMO

Here, we present the first complete mitochondrial genome of Malayan Gaur (Bos gaurus hubbacki) inferred using next-generation sequencing. The mitogenome is 16,367 bp in length with the structural organization of a typical bovine mitochondrial arrangement comprising 13 protein-coding genes, 21 tRNAs, and 2 rRNAs. No internal stop codon was found in the protein-coding genes. Phylogenetic tree analysis revealed that Malayan gaur is more closely related to Burmese banteng instead of gaur.

17.
Sci Rep ; 9(1): 10756, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341205

RESUMO

The emergence of cost-effective and rapid sequencing approaches has resulted in an exponential rise in the number of mitogenomes on public databases in recent years, providing greater opportunity for undertaking large-scale comparative genomic and systematic research. Nonetheless, current datasets predominately come from small and disconnected studies on a limited number of related species, introducing sampling biases and impeding research of broad taxonomic relevance. This study contributes 21 crustacean mitogenomes from several under-represented decapod infraorders including Polychelida and Stenopodidea, which are used in combination with 225 mitogenomes available on NCBI to investigate decapod mitogenome diversity and phylogeny. An overview of mitochondrial gene orders (MGOs) reveals a high level of genomic variability within the Decapoda, with a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Despite the substantial morphological and ecological variation among decapods, there was limited evidence for correlations between gene rearrangement events and species ecology or lineage specific nucleotide substitution rates. Within a phylogenetic context, predicted scenarios of rearrangements show some MGOs to be informative synapomorphies for some taxonomic groups providing strong independent support for phylogenetic relationships. Additional comparisons for a range of mitogenomic features including nucleotide composition, strand asymmetry, unassigned regions and codon usage indicate several clade-specific trends that are of evolutionary and ecological interest.


Assuntos
Decápodes/genética , Mitocôndrias/genética , Animais , Decápodes/classificação , Evolução Molecular , Rearranjo Gênico/genética , Genômica , Filogenia
18.
Gigascience ; 7(3): 1-6, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342277

RESUMO

Background: Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics. Results: We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791 and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3% BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94% fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional 16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which were annotated functionally with information from either sequence homology or protein signature searches. Conclusions: We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A. ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic studies specifically for clownfish and more generally for other related fish species of the family Pomacentridae.


Assuntos
Perciformes/genética , Filogenia , Análise de Sequência de DNA/métodos , Animais , Genoma/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Nanoporos
19.
PeerJ ; 5: e2982, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265498

RESUMO

BACKGROUND: Whole mitochondrial DNA is being increasingly utilized for comparative genomic and phylogenetic studies at deep and shallow evolutionary levels for a range of taxonomic groups. Although mitogenome sequences are deposited at an increasing rate into public databases, their taxonomic representation is unequal across major taxonomic groups. In the case of decapod crustaceans, several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud lobsters) and Caridea (true shrimps) are still under-represented, limiting comprehensive phylogenetic studies that utilize mitogenomic information. METHODS: Sequence reads from partial genome scans were generated using the Illumina MiSeq platform and mitogenome sequences were assembled from these low coverage reads. In addition to examining phylogenetic relationships within the three infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and frequency of codon usage bias and mitogenome gene order rearrangements. RESULTS: We present new mitogenome sequences for five shrimp species from Australia that includes two ghost shrimps, Callianassa ceramica and Trypaea australiensis, along with three caridean shrimps, Macrobrachium bullatum, Alpheus lobidens, and Caridina cf. nilotica. Strong differences in codon usage were discovered among the three infraorders and significant gene order rearrangements were observed. While the gene order rearrangements are congruent with the inferred phylogenetic relationships and consistent with taxonomic classification, they are unevenly distributed within and among the three infraorders. DISCUSSION: Our findings suggest potential for mitogenome rearrangements to be useful phylogenetic markers for decapod crustaceans and at the same time raise important questions concerning the drivers of mitogenome evolution in different decapod crustacean lineages.

20.
Genome Announc ; 5(19)2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28495773

RESUMO

The acquisition of Photorhabdus insect-related (Pir) toxin-like genes in Vibrio parahaemolyticus has been linked to hepatopancreatic necrosis disease in shrimp. We report the whole-genome sequences of genetically virulent and avirulent V. parahaemolyticus isolated from a Malaysian aquaculture pond and show that they represent previously unreported sequence types of V. parahaemolyticus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA