Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 51(1): 105-15, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23747013

RESUMO

Zinc is an essential cofactor of all major eukaryotic RNA polymerases. How the activity of these enzymes is coordinated or regulated according to cellular zinc levels is largely unknown. Here we show that the stability of RNA polymerase I (RNAPI) is tightly coupled to zinc availability in vivo. In zinc deficiency, RNAPI is specifically degraded by proteolysis in the vacuole in a pathway dependent on the export in Xpo1p and deubiquitination of the RNAPI large subunit Rpa190p by Ubp2p and Ubp4p. RNAPII is unaffected, which allows for the expression of genes required in zinc deficiency. RNAPI export to the vacuole is required for survival during zinc starvation, suggesting that degradation of zinc-binding subunits might provide a last resort zinc reservoir. These results reveal a hierarchy of cellular transcriptional activities during zinc starvation and show that degradation of the most active cellular transcriptional machinery couples cellular growth and proliferation to zinc availability.


Assuntos
RNA Polimerase I/fisiologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Zinco/metabolismo , Regulação para Baixo , Endopeptidases/metabolismo , Endopeptidases/fisiologia , Estabilidade Enzimática , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Ubiquitinação , Vacúolos/metabolismo
2.
Protein Sci ; 16(11): 2542-51, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17962407

RESUMO

Obtaining well-diffracting crystals of macromolecules remains a significant barrier to structure determination. Here we propose and test a new approach to crystallization, in which the crystallization target is fused to a polymerizing protein module, so that polymer formation drives crystallization of the target. We test the approach using a polymerization module called 2TEL, which consists of two tandem sterile alpha motif (SAM) domains from the protein translocation Ets leukemia (TEL). The 2TEL module is engineered to polymerize as the pH is lowered, which allows the subtle modulation of polymerization needed for crystal formation. We show that the 2TEL module can drive the crystallization of 11 soluble proteins, including three that resisted prior crystallization attempts. In addition, the 2TEL module crystallizes in the presence of various detergents, suggesting that it might facilitate membrane protein crystallization. The crystal structures of two fusion proteins show that the TELSAM polymer is responsible for the majority of contacts in the crystal lattice. The results suggest that biological polymers could be designed as crystallization modules.


Assuntos
Cristalografia por Raios X/métodos , Polímeros/química , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Aminoácidos/química , Membrana Celular/metabolismo , Clonagem Molecular , Cristalização , Detergentes/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas Recombinantes de Fusão/química , Variante 6 da Proteína do Fator de Translocação ETS
3.
Cell Metab ; 16(1): 90-6, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22768841

RESUMO

Iron constitutes a major source of toxicity due to its ability to generate reactive oxygen species that can damage cellular macromolecules. However, the precise mechanism by which exposure to high iron concentrations results in cellular toxicity remains unknown. Here we identify sphingolipid synthesis and signaling as a major mediator of iron toxicity in S. cerevisiae. Inhibition of sphingolipid synthesis by myriocin treatment or after overexpression of the negative regulator Orm2p confers resistance to high iron. High iron conditions upregulate sphingolipid synthesis, and increasing sphingolipid levels by inactivating Orm2p exacerbates sensitivity to iron. Toxicity is mediated by sphingolipid signaling, as inactivation of the sphingolipid-activated protein kinases Pkh1p and Ypk1p and of the transcription factor Smp1p also enhances resistance to high iron conditions. These results demonstrate an unexpected connection between sphingolipid flux and iron toxicity and show that activation of a signal transduction cascade contributes to iron-mediated cellular toxicity.


Assuntos
Ferro/farmacologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esfingolipídeos/biossíntese , Antifúngicos/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Técnicas de Inativação de Genes , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Ferro/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Estresse Oxidativo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA