Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(6): e2306116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794626

RESUMO

The COVID-19 mRNA vaccines represent a milestone in developing non-viral gene carriers, and their success highlights the crucial need for continued research in this field to address further challenges. Polymer-based delivery systems are particularly promising due to their versatile chemical structure and convenient adaptability, but struggle with the toxicity-efficiency dilemma. Introducing anionic, hydrophilic, or "stealth" functionalities represents a promising approach to overcome this dilemma in gene delivery. Here, two sets of diblock terpolymers are created comprising hydrophobic poly(n-butyl acrylate) (PnBA), a copolymer segment made of hydrophilic 4-acryloylmorpholine (NAM), and either the cationic 3-guanidinopropyl acrylamide (GPAm) or the 2-carboxyethyl acrylamide (CEAm), which is negatively charged at neutral conditions. These oppositely charged sets of diblocks are co-assembled in different ratios to form mixed micelles. Since this experimental design enables countless mixing possibilities, a machine learning approach is applied to identify an optimal GPAm/CEAm ratio for achieving high transfection efficiency and cell viability with little resource expenses. After two runs, an optimal ratio to overcome the toxicity-efficiency dilemma is identified. The results highlight the remarkable potential of integrating machine learning into polymer chemistry to effectively tackle the enormous number of conceivable combinations for identifying novel and powerful gene transporters.


Assuntos
Micelas , Polietilenoglicóis , Polietilenoglicóis/química , Polímeros/química , Técnicas de Transferência de Genes , Acrilamidas
2.
J Nanobiotechnology ; 19(1): 292, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579715

RESUMO

Cationic polymers have been widely studied for non-viral gene delivery due to their ability to bind genetic material and to interact with cellular membranes. However, their charged nature carries the risk of increased cytotoxicity and interaction with serum proteins, limiting their potential in vivo application. Therefore, hydrophilic or anionic shielding polymers are applied to counteract these effects. Herein, a series of micelle-forming and micelle-shielding polymers were synthesized via RAFT polymerization. The copolymer poly[(n-butyl acrylate)-b-(2-(dimethyl amino)ethyl acrylamide)] (P(nBA-b-DMAEAm)) was assembled into cationic micelles and different shielding polymers were applied, i.e., poly(acrylic acid) (PAA), poly(4-acryloyl morpholine) (PNAM) or P(NAM-b-AA) block copolymer. These systems were compared to a triblock terpolymer micelle comprising PAA as the middle block. The assemblies were investigated regarding their morphology, interaction with pDNA, cytotoxicity, transfection efficiency, polyplex uptake and endosomal escape. The naked cationic micelle exhibited superior transfection efficiency, but increased cytotoxicity. The addition of shielding polymers led to reduced toxicity. In particular, the triblock terpolymer micelle convinced with high cell viability and no significant loss in efficiency. The highest shielding effect was achieved by layering micelles with P(NAM-b-AA) supporting the colloidal stability at neutral zeta potential and completely restoring cell viability while maintaining moderate transfection efficiencies. The high potential of this micelle-layer-combination for gene delivery was illustrated for the first time.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Polímeros , Resinas Acrílicas , Animais , Cátions , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Plasmídeos , Polimerização , Transfecção
3.
ACS Macro Lett ; : 158-165, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38230657

RESUMO

The arrangement of charged segments in triblock copolymer micelles affects the gene delivery potential of polymeric micelles and can increase the level of gene expression when an anionic segment is incorporated in the outer shell. Triblock copolymers were synthesized by RAFT polymerzation with narrow molar mass distributions and assembled into micelles with a hydrophobic core from poly(n-butyl acrylate). The ionic shell contained either (i) an anionic segment followed by a cationic segment (HAC micelles) or (ii) a cationic block followed by an anionic block (HCA micelles). The pH-responsive anionic block contained 2-carboxyethyl acrylamide (CEAm), while the cationic block comprised 3-guanidinopropyl acrylamide (GPAm). Increasing the molar content of CEAm in HAC and HCA micelles from 6 to 13 mol % improved cytocompatibility and the endosomal escape property, while the HCA micelle with the highest mol % of anionic charges in the outer shell exhibited the highest gene expression. It became evident that improved membrane interaction of the best performing HCA micelle contributed to achieving high gene expression.

4.
ACS Macro Lett ; : 1000-1007, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052525

RESUMO

Histidine and arginine are two amino acids that exhibit beneficial properties for gene delivery. In particular, the imidazole group of histidine facilitates endosomal release, while the guanidinium group of arginine promotes cellular entry. Consequently, a dual-charged copolymer library based on these amino acids was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The content of the N-acryloyl-l-histidine (His) monomer was systematically increased, while maintaining consistent levels of methyl N-acryloyl-l-argininate hydrochloride (ArgOMe) or N-(4-guanidinobutyl)acrylamide hydrochloride (GBAm). The resulting polymers formed stable, nanosized polyplexes when complexed with nucleic acids. Remarkably, candidates with increased His content exhibited reduced cytotoxicity profiles and enhanced transfection efficiency, particularly retaining this performance level at lower pDNA concentrations. Furthermore, endosomal release studies revealed that increased His content improved endosomal release, while ArgOMe improved cellular entry. These findings underscore the potential of customized dual-charged copolymers and the synergistic effects of His and ArgOMe/GBAm in enhancing gene delivery.

5.
Nanoscale ; 13(46): 19412-19429, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34591061

RESUMO

Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.


Assuntos
Técnicas de Transferência de Genes , Micelas , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Temperatura
6.
J Mater Chem B ; 8(23): 5026-5041, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32319993

RESUMO

The use of genetic material by non-viral transfer systems is still in its initial stages, but there are high expectations for the development of targeted therapies. However, nucleic acids cannot enter cells without help, they must be well protected to prevent degradation and overcome a variety of biological barriers, the endosomal barrier being one of the greatest cellular challenges. Herein, the structure-property-relationship was investigated in detail, using well-defined polymers. Polyacrylamides were synthesized via RAFT polymerization resulting in a polymer library of (i) different cationic groups as aminoethyl acrylamide (AEAm), dimethylaminoethyl acrylamide (DMAEAm), dimethylaminopropyl acrylamide (DMAPAm) and guanidinopropyl acrylamide (GPAm); (ii) different degree of polymerization; and investigated (iii) in different cell culture settings. The influence of molar mass and cationic moiety on complex formation with pDNA, cytotoxicity and transfection efficiency of the polymers were investigated. The systematic approach identified a pH-independent guanidinium-containing homopolymer (PGPAm89) as the polymer with the highest transfection efficiency and superior endosomal release under optimal conditions. Since PGPAm89 is not further protonated inside endosomes, common escape theories appear unsuitable. Therefore, the interaction with bis(monoacryloylglycerol)phosphate, a lipid specific for endosomal vesicles, was investigated. Our research suggests that the interactions between amines and lipids may be more relevant than anticipated.


Assuntos
Endossomos/metabolismo , Polímeros/metabolismo , Endossomos/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/química , Peso Molecular , Tamanho da Partícula , Polimerização , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade , Propriedades de Superfície , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA